
Thesis for the Degree of Doctor of Philosophy

Privacy Policies for Social Networks
A Formal Approach

Raúl Pardo

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2017

Privacy Policies for Social Networks — A Formal Approach
Raúl Pardo
ISBN 978-91-7597-631-0 (Print), 978-91-7597-631-0 (PDF)

© Raúl Pardo, 2017.

Technical report 146D
Department of Computer Science and Engineering
Research groups: Formal Methods and Language Technology

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers reproservice
Gothenburg, Sweden 2017

Abstract

Online Social Networks (OSNs) are ubiquitous, with more than 70% of Internet users
being part of them. The pervasive nature of OSNs brings many threats and challenges,
privacy being one of them. Very often the available privacy protection mechanisms
in OSNs do not meet users requirements. This results in users that are unable to
define privacy settings (also known as privacy policies) that meet their expectations.
Furthermore, current privacy settings are difficult to understand, which makes users
sharing their personal information with more people than they actually intend to. In
this thesis we explore novel techniques to protect users’ privacy in OSNs.

On the one hand, we define a formal framework to write privacy policies in OSNs and
to reason about them. We use this framework to define and study current and new types
of privacy policies that are not present in today’s OSNs. In particular, we look into:
i) protection against implicit disclosure of information, e.g., a user sharing someone
else’s information—without her consent; and ii) evolving privacy policies, i.e., privacy
policies that change over time, e.g., “my supervisor cannot see my location during the
weekend”. These formalisms also provide a direct enforcement mechanism for this new
type of privacy policies. We have developed a proof-of-concept implementation of the
enforcement to show the practicality of our technique. We formally prove that this
enforcement is correct, i.e., no privacy violations may occur.

On the other hand, we look into the problem of embedding privacy policies into the
data. Having policies and data as separate entities is prone to consistency issues. It
might happen that the data is accessed by individuals who should not have access to
it because the access policy is outdated or simply missing. This issue is particularly
important in OSNs as they normally rely on geographically distributed databases or
have a distributed architecture. Concretely, we use Attributed-Based Encryption (ABE)
to “attach” privacy policies to pictures.

Keywords: online social networks, privacy, formal methods, epistemic logic

To Diego, Paqui, Carmen and Llanos.

Funding

The work presented in this thesis has been funded by the Swedish funding agency SSF
under the grant Data Driven Secure Business Intelligence.

Acknowledgements

I would like to thank all the people who supported me during the exciting process of
becoming a PhD.

Firstly, I thank my advisor Gerardo Schneider for his excellent guidance and for
giving me the opportunity to work together. Thank you, when I look back, I see how
much you have helped me to grow as a researcher and as a person.

Special thanks to my collaborators. It has been a pleasure working with all of you
and I have learnt a lot from the experience. This thesis would not have been possible
without you.

I want to thank Musard Balliu for his insights on my research and advise which
are now reflected on this thesis. I am also grateful to Andrei Sabelfeld for always
suggesting new ideas to explore, his comments on an earlier version of this thesis, and
for the energizing Sunday runs in the forest.

Thanks to the members of the Formal Methods division, I really enjoyed our weekly
seminars that have contributed to substantially expand my knowledge on Formal Meth-
ods. In particular, I would like to thank Wolfgang Ahrendt for giving me new viewpoints
when presenting my research.

Devdatt Dubhashi deserves special thanks for extensive debates on Formal Meth-
ods versus Machine Learning—among others—with which I have developed excellent
discussion skills.

I am very grateful to all my friends at the Department. Thank you guys for being
there to hang out, go dancing, go climbing, the trips, and all experiences we have shared.
You have made my stay in Sweden one of the most enjoyable moments of my life.

I would also like to thank Fernando L. Pelayo, who introduced me to the research
world and he has been a constant help ever since. Thank you very much.

Quiero agradecer el apoyo incondicional de mis padres Diego y Paqui, gracias a
vosotros he llegado hasta aquí. A mis hermanas Carmen y Llanos quiero agradecerles
que siempre están ahí. También agradezco a mis abuelos, tíos y primos su gran apoyo.

No me olvido de amigos Rafa, Callejas, Juanma, Kike, Lucio, Andrés, Isra, Villa,
Bea, Pedro, Laura, Lacoste, Ana, Juanma Soler, Rubén, Pedro García y Javi. Gracias
por hacer que cada vez que os vuelvo a ver parezca que el tiempo no ha pasado.

Finally, thanks to Mahsa for making this year very special, and for your continuous
support.

Structure of this thesis

This thesis comprises a collection of seven scientific articles devoted to exploring different
techniques to offer advanced privacy settings in online social networks. The articles
correspond to Chapters II-VIII and are published in the following venues:

Chapter II Raúl Pardo and Gerardo Schneider. ‘A Formal Privacy Policy Framework
for Social Networks’. In: Proceedings of the 12th International Conference on
Software Engineering and Formal Methods, SEFM’14. Vol. 8702. LNCS. 2014,
pp. 378–392. isbn: 978-3-319-10430-0. doi: 10.1007/978-3-319-10431-7_30

Chapter III Raúl Pardo, Musard Balliu, and Gerardo Schneider. ‘Formalising privacy
policies in social networks’. In: Journal of Logical and Algebraic Methods in
Programming (2017). issn: 2352-2208. doi: 10.1016/j.jlamp.2017.02.008

Chapter IV Raúl Pardo and Gerardo Schneider. ‘Model Checking Social Network
Models’. In: Proceedings of the Eighth International Symposium on Games, Au-
tomata, Logics and Formal Verification, GandALF’17. Vol. 256. EPTCS. 2017,
pp. 238–252. doi: 10.4204/EPTCS.256.17

Chapter V Raúl Pardo, Christian Colombo, Gordon J. Pace, and Gerardo Schneider.
‘An Automata-Based Approach to Evolving Privacy Policies for Social Networks’.
In: Proceedings of the 16th International Conference on Runtime Verification,
RV’16. Vol. 10012. LNCS. 2016, pp. 285–301. isbn: 978-3-319-46981-2. doi:
10.1007/978-3-319-46982-9_18

Chapter VI Raúl Pardo, Ivana Kellyérová, César Sánchez, and Gerardo Schneider.
‘Specification of Evolving Privacy Policies for Online Social Networks’. In: Pro-
ceedings of the 23rd International Symposium on Temporal Representation and
Reasoning, TIME’16. IEEE, 2016, pp. 70–79. isbn: 978-1-5090-3825-1. doi:
10.1109/TIME.2016.15

https://doi.org/10.1007/978-3-319-10431-7_30
https://doi.org/10.1016/j.jlamp.2017.02.008
https://doi.org/10.4204/EPTCS.256.17
https://doi.org/10.1007/978-3-319-46982-9_18
https://doi.org/10.1109/TIME.2016.15

Chapter VII Raúl Pardo, César Sánchez, and Gerardo Schneider. ‘Timed Epistemic
Knowledge Bases for Social Networks (Extended Version)’. In: ArXiv e-prints
(2017). eprint: 1708.04070 (cs.LO)

Chapter VIII Pablo Picazo-Sanchez, Raúl Pardo, and Gerardo Schneider. ‘Secure
Photo Sharing in Social Networks’. In: Proceedings of the 32nd International
Conference on ICT Systems Security and Privacy Protection, IFIP SEC 2017.
Vol. 502. 2017, pp. 79–92. isbn: 978-3-319-58469-0. doi: 10.1007/978-3-319-
58469-0_6

1708.04070
https://doi.org/10.1007/978-3-319-58469-0_6
https://doi.org/10.1007/978-3-319-58469-0_6

Contents

I Introduction 1
I.1 Privacy Policies in Online Social Networks 2
I.2 Access Control in Online Social Networks 5
I.3 Thesis Overview . 8

II A Formal Privacy Policy Framework for Social Networks 17
II.1 Introduction . 19
II.2 Privacy Policy Framework . 20
II.3 PPF instantiation . 25
II.4 Case Studies . 27
II.5 Related Work . 33
II.6 Final Discussion . 34

III Formalising Privacy Policies in Social Networks 37
III.1 Introduction . 39
III.2 Privacy Policy Framework . 42
III.3 Privacy Policies in Dynamic SNS 59
III.4 Proving Privacy in Social Networks 69
III.5 Discussion and Related Work . 76
III.6 Conclusions and Future Work . 79
III.A Appendix . 81

IV Model Checking Social Network Models 101
IV.1 Introduction . 103
IV.2 Preliminaries . 105
IV.3 Model checking SNMs . 111
IV.4 Properties of Knowledge in SNMs 112
IV.5 Translation of SNMs into Kripke Models 116
IV.6 Model checking complexity . 118

IV.7 Related work . 121
IV.8 Final Discussion . 121
IV.A Appendix . 123

V An Automata-based Approach to Evolving Privacy Policies for
Social Networks 133
V.1 Introduction . 135
V.2 Policy automata . 136
V.3 Translation of policy automata to DATEs 144
V.4 Implementation in Diaspora* using Larva 145
V.5 Case studies . 147
V.6 Related work . 149
V.7 Conclusions . 150
V.A Appendix . 151

VI Specification of Evolving Privacy Policies for Online Social Net-
works 157
VI.1 Introduction . 159
VI.2 Timed FPPF . 160
VI.3 KBLT model-checking . 172
VI.4 Related Work . 175
VI.5 Final Discussion . 175
VI.A Appendix . 176

VII Timed Epistemic Knowledge Bases for Social Networks 181
VII.1 Introduction . 183
VII.2 A Timed Privacy Policy Framework 185
VII.3 A Timed Knowledge Based Logic 185
VII.4 Writing Privacy Policies . 206
VII.5 Related work . 208
VII.6 Conclusions . 209

VIII Secure Photo Sharing in Social Networks 211
VIII.1 Introduction . 213
VIII.2 Preliminaries . 215
VIII.3 System Design . 217
VIII.4 Evaluation . 222
VIII.5 Related Work . 224
VIII.6 Conclusions . 226

Bibliography 229

1

Chapter I

Introduction

As the use of Online Social Networks (OSNs) increases [45], privacy breaches in OSNs
keep pace with this growth [81, 56, 41, 51]. This is not a surprise. The main purpose
of OSNs is to share information. OSN users share mostly personal information related
to the social aspects of their lives, e.g., pictures, locations, birthday, relationship status,
political opinions and so forth. That is, users’ sensitive information. Privacy, however,
has been an afterthought, and privacy breaches are being fixed as they appear. A
privacy breach occurs when user information is disclosed to an undesired audience or
when the information is misused. The author of a privacy breach can be either the OSN
provider or its users. An example of the former is an OSN provider that sells users data
to third parties without users’ consent. A user tagging another user in a picture or
re-sharing a post—thus increasing the post’s audience—are examples of the latter. In
this thesis we focus on privacy breaches caused by users. Most of the time this type of
privacy breaches is related to the lack of control that users have over the information
they share, and difficulty understanding who can see their information.

In this chapter, we look into the tools that OSN users have to protect their privacy
and give an overview of our proposal on how to improve them. First, we start by
describing privacy policies for OSNs and related problems (Section I.1). Second, we
look into the protection mechanism that OSN providers currently use to implement
privacy settings and discuss their limitations (Section I.2). Finally, we give an overview
of this thesis where we present our contributions to solve the privacy problems we
describe (Section I.3).

2

Figure I.1: Facebook Privacy Settings

I.1 Privacy Policies in Online Social Networks

Users in OSNs express their privacy preferences by means of privacy policies. Current
privacy policies define who can access what information. For instance, in the privacy
settings1 of Facebook, users can specify who can see their posts or friends list—first
row in Fig. I.1. They can also limit the actions that other users can perform, e.g., they
can limit who can send them a friend request—fourth row in Fig. I.1. Other OSNs
have privacy policies that are targeted to the particular information that users share.
Consider the fitness OSN Strava, where users can upload running, cycling or swimming
workouts. Usually, these workouts include GPS traces which show the locations where
users have been training. In Strava, users can define privacy zones which are hidden
areas of their workout map (cf. Fig. I.2). Finally, in almost all OSNs, users can block
other users. Blocking forbids any interaction between the two users, hence avoiding any
abusive or harmful behaviour towards their social status in the platform.

Unfortunately, empirical studies have shown that the privacy policies available in
OSNs today do not meet users expectations [56, 41, 51, 1]. In [51], Liu et al. conducted
a study where they found out that Facebook’s privacy settings match users expectations
only 37% of the time. In one of the experiments, the authors report that 63% of the
pictures had privacy settings that were inconsistent with users’ desired settings. The
reasons for this are manifold. Sometimes users lack of the appropriate understanding

1Privacy settings are an instance of privacy policies. In the thesis, we talk about privacy policies
because it is a broader term that captures more concepts than the concrete privacy settings that OSN
providers implement today.

Introduction 3

Figure I.2: Strava Privacy Zones

of the use of the OSN. Most OSNs companies spend a lot of resources in investigating
how to present privacy settings to users in an effective way [63, 14]. Due to this lack
of understanding, some users fall into using the default settings, which often are not
protective enough [36]. Last but not least, developers lack tools that prevent privacy
disclosures. Many times, privacy breaches appear after adding new functionality to the
OSN. In this thesis we focus on following three concrete privacy problems:

Problem i) Mismatch between privacy policy and user intentions.

Problem ii) Privacy concerns change over time.

Problem iii) Outdated privacy policies disclose information to the wrong audience.

In what follows we give examples to illustrate how these three issues fail to meet
users’ expectations.

Mismatch between privacy policy and user intentions. This problem arises
when the activation of a privacy policy does not result in the desired intention of the
user. Consider a user that has the so called friends only profile [89]. It consists in setting
all privacy policies to friends only. Fig. I.1 is an example of a friends only profile. All

4

sections are set to Friends, except for “who can send me a friend request” which is set
to friends of friends—this is the most restrictive option available. The goal of having
a friend only profile is to limit the audience of all the user’s information to only her
friends. In fact having a friends only profile is one the so called privacy-enhancing
practices for OSNs [89]. Since friendship in Facebook is a reciprocal relationship—i.e.,
both users need to agree to start being friends—this practice limits the audience of
the information to a set of known people. Imagine now that Alice—who has a friends
only profile—shares a picture of herself together with Bob. Later she tags Bob on the
picture. This action will increase the picture’s audience to Alice’s friends and Bob’s
friends, thus mismatching Alice’s intention of sharing her information only with her
friends. Note that Alice has set all her privacy settings to friends only and she is the
only one interacting with the picture, yet the picture is shown to more people than she
expected.

Privacy concerns change over time. Depending on when or how many times some
information is released users might prefer to share it or keep it private. For example, it
may be safe to have your location disclosed twice a month. It is not so safe to have it
disclosed every second. The latter might be considered a violation of privacy, considering
that it does not allow the user to visit any place without it being recorded. Imagine
that you are being tracked 24/7; would that influence your behaviour? Moreover, from
such a detailed set of information, it might be possible to infer other information that
the user does not want to disclose, e.g., favourite restaurants, most frequently visited
people, weekend trips, and so on. This type of privacy flaw was found in Facebook’s
messenger app [9]. The app included, by default, the location of users in every message.
This was exploited by other users who were able to track friends just by chatting with
them. Facebook developers realised this issue and quickly changed the defaults and
updated the app to alert users of the consequences of sharing their location in the app.

Bauer et al. empirically show that privacy concerns vary over time [6]. In their
experiments they note that users change the audience of old posts depending on several
factors. For instance, sometimes after having other users commenting in a post, the
owner of the post decided to reduce the audience. This may occur due to comments
that include political opinions, racism or sexism to which the owner of the post does
not want to be linked. They also found out that as posts get old, many users prefer to
reduce their audience. Even events that occur in the present might affect to whom the
content is made visible in the future. Recently, Facebook introduced a breakup mode
which limits the updates of people who were in a couple after breaking up [62]. In this
mode, users may select not to share pictures with their ex-partners, but still allow them
to send private messages. Also, the newsfeed includes less posts of the ex-partners, and

Introduction 5

they are not suggested as people to tag on a picture. By offering these advanced privacy
settings, Facebook adapts better to the privacy concerns of the users after the breakup.

Outdated privacy policies disclose information to the wrong audience. This
problem occurs when a user changes her privacy policies and these are not correctly
updated—internally in the storage system of the OSN; thus disclosing information to
undesired audience. All OSNs are geographically distributed systems, either because
they have a distributed architecture such as Diaspora, or because they store information
in a geographically distributed database, e.g., Facebook, Twitter or Instagram. Inter-
nally, policy and data are two separate entities. Suppose that Alice shares a picture
together with a policy that allows only Bob and Charlie to access it. The picture and
the policy are replicated in all nodes of the system. Afterwards Alice decides to re-
move Bob from the picture’s audience. Now the new policy must be updated in all
nodes. However, if the system uses an outdated version of the policy, the picture would
still be shared with Bob. In Facebook, this issue is almost negligible, since they rely
on a master/slave data store which updates all the information—including policies—in
the database in a few milliseconds [11]. Yet Facebook mentions that they prioritise
availability and performance, as opposed to data consistency, and they would benefit
from reducing the amount of updates in the data store. In the case of Diaspora, when
information is copied to different nodes of the system, policies are also copied. Unfor-
tunately, when policies are updated in one node, they are not transmitted to all nodes
where the data was copied, therefore, disclosing the information to the wrong audience.

Many of the privacy problems described in this section arise due to the underly-
ing privacy protection mechanism of OSNs. In the following section we describe this
protection mechanism and discuss its limitations.

I.2 Access Control in Online Social Networks
Access control is the protection mechanism that today’s OSNs use to handle access to
information. Here we provide background on the internal structure of OSNs and the
access control model they implement.

I.2.1 Structure of Online Social Networks
According to Boyd and Ellison [10] OSNs have three distinguishing characteristics that
differentiate them from other online services:

• A public or semi-public profile defined by users;

6

• A set of connections or relationships between users of the system;

• The ability for users to see certain information about others they are connected
to, including meta-information as for instance others’ connections.

The underlying structure of an OSN is the so called social graph [27, 11]. Nodes, in
this graph, represent users and resources—e.g., posts, pictures, locations, and so on—
and edges are used to model connections among users and resources. Fig. I.3 shows an
example of such a graph. This social graph has three users: Alice, Bob and Charlie. It
also contains one resource, a picture, denoted as Pic1. Dotted arrows represent social
connections between users. The arrow between Alice and Bob means that Alice and Bob
are friends, and the arrow from Bob to Charlie shows that Bob follows Charlie. Note
that friend is a bidirectional relation, meaning that Alice is a friend with Bob and vice
versa. Friend is the main connection in Facebook. In Facebook it is also bidirectional—
becoming friends results from a mutual agreement between users. Not all connections
are bidirectional, a frequent connection between users is follow. It is present in several
OSNs, e.g., Twitter, Instagram, Snapchat, Youtube and others. In our example—as in
the mentioned OSNs—follow is unidirectional only indicating that Bob follows Charlie.
Additionally, there are two connections between users and the picture Pic1, as denoted
by plain lines. The connection between Alice and Pic1 indicates that she is the owner
of the picture, and the remaining arrow models that Bob is tagged in Pic1.

I.2.2 Relationship-Based Access Control

In Relationship-Based Access Control (ReBAC) users specify who can access their infor-
mation by means of social relationships. This new approach to access control arises as
a consequence of the structure of OSNs. In [32], Fong et al. identify distinctive features
of ReBAC compared with other access control paradigms such as Discretionary Access
Control (DAC) [34, 47] or Role-Based Access Control (RBAC) [82]:

• Access policies are defined in terms of the relations in the social graph. Moreover,
each user defines the audience of her own resources. Consider Alice, in Fig. I.3,
who may define that Pic1—a picture she owns—can only be accessed by her friends,
that is, Bob. Alternatively, she can set Pic1 as public which results in Bob and
Charlie having access to it.

• For accessing any resource, it must be reachable in the social graph. When Bob
access Pic1, permission is granted if Bob’s node is reachable from Alice’s through
the friend relation. In Fig. I.3, Bob’s node is reachable from Alice’s. From Char-

Introduction 7

Alice Bob

CharliePic1

friend

followowner

tagged

Figure I.3: Social Graph Example

lie’s node, however, Bob’s node is not reachable. Therefore, Charlie would not be
able to access Alice’s picture.

• Abstraction of the sequence of events that occur in the system. In many access
control systems, authorisation is a function of a sequence of events [83]. Imagine
that friendship in our example is a bidirectional relation which requires both users
to agree before establishing the connection. In order for Charlie to access Alice’s
posts, one possibility is that: i) Charlie sends a friend request to Alice; ii) Alice
accepts the request; iii) Charlie access the post. In ReBAC, most of the time, the
sequence of events is “registered” in the social graph, hence boiling down access
control to checking the social graph. For instance, in our previous example, the
effect of Alice and Charlie becoming friends results in adding a friend relation
between them. Though this approach to abstracting the event history is also
present in RBAC [82], the two models are structurally different. On the one hand,
in RBAC, the execution of a sequence of events results in placing users in a role
or a set of roles which determine what they can access. On the other hand, in
ReBAC, the execution of a sequence of events creates relations between users that
condition who can access the resources in the system.

8

While ReBAC is tailored to the structure of OSNs, the constant presence of privacy
breaches in OSN suggests that the model might need to be revised. Mondal et al. claim
that access control is inadequate for managing privacy in OSNs [60]. They raise, among
others, the following issues:

1. Users must, a priori, specify the audience of their information. This issue relates
to Problem ii) mentioned above, i.e., users privacy concerns might change over
time. There is a need for policies that adapt as time elapses or events occur. For
instance, the approach of Dougherty et al. introduces an access control system
with support for dynamic policies [23]. Nevertheless, it has not been studied how
to adapt Dougherty’s work to OSNs.

2. Access control does not capture how information should be redistributed. In OSNs,
it is also important to let users limit the way other users can interact with their
information. For example, Alice might feel comfortable sharing Pic1 with Bob,
but maybe she does not want Bob to re-share Charlie—who, initially, did not have
access to Pic1. It is important to provide users with a mechanism that helps them
define how people with access to their information can use it. The recent line of
work on usage control is tackling this issue [42]. This issue is related to Problem
i).

In the next Section, we introduce our approach to tackling some of the privacy
issues we have described. We present new models that are aimed at granting access
to information, and controlling how this information propagates in the system. These
models preserve the topology of the social graph, but are enriched with additional
machinery focused on enhancing the control that users have over the information.

I.3 Thesis Overview
The work included in this thesis aims at developing privacy policies for OSNs that
give users more control over their information. The thesis comprises seven chapters.
Chapters II-VI and VIII correspond to papers that have been published in peer-reviewed
conferences, symposia and journals. Chapter VII corresponds to a paper which is
currently under submission. Even though each of the papers tackles a different problem,
they can be classified in the following topics: static privacy policies, dynamic
privacy policies and unification of privacy policies and data. Fig. I.4 gives an
overview of this classification. The figure also shows the relations between chapters and
the problem that each topic addresses. In what follows we briefly describe each of the

Introduction 9

Privacy Policies for Online Social Networks

Static Privacy
Policies

II III

IV

Problem i

Dynamic Privacy
Policies

VI

V

VII

Problem ii

Unification of Privacy
Policy and Data

VIII

Problem iii

Figure I.4: Classification of the chapters in the thesis

topics covered in the thesis, how chapters relate to each other and their contribution to
solving the problems mentioned in Section I.1.

Static privacy policies
In Chapters II, III and IV we present a novel framework to write privacy policies in
OSNs. The framework is based on models that preserve the structure of OSN, i.e., the
social graph. These models, however, are enriched with the knowledge of the users.
In a nutshell, our models are social graphs enriched with a knowledge base for each
user containing the set of facts they know. This enables users to write privacy policies
in terms of the knowledge. That is, users can decide who can know—in other words,
access—their information. For example users can specify privacy policies like “Only my
friends can know my location”.

Although this type of policies can also be stated in ReBAC, the main difference
lies in the enforcement mechanism of the framework. In ReBAC policies talk about
resources, whereas in our framework policies talk about the knowledge of the users.
Consider again the example we described in Problem i) (cf. Section I.1) where users
set all privacy policies to friends only. We mentioned that, by tagging on a picture, the
audience of the picture might increase hence violating the policy. In our framework, the
event of tagging increases the knowledge base of the users that are part of the audience
of the picture and are not friends of the owner. As a result, the enforcement mechanism
detects that there are users, who are not friends with the owner of the picture, that

10

“know” (have accessed) the picture. At this point any preventive action can be taken,
for instance, blocking the tagging or hiding the picture to the users who are not friends
with the owner of the picture.

Our framework is formal. We use a knowledge-based language—similar to that of
epistemic logic [29]—to describe and reason about the knowledge of the users. We
use a labelled transition system to formalise the evolution of the system. Small step
operational semantics describes changes in the knowledge of the users, topology of
the social graph and privacy policies. The formalisation gives the required tools to
implement an enforcement for the privacy policies in the framework. Furthermore,
using all these elements we can formally prove that no privacy policy can be violated
in the system.

Dynamic privacy policies

In Chapters VI and VII we extend the framework to support privacy policies that
depend on time and events. For example, the framework allows users to write a privacy
policy states “My location may be disclosed only three times per day”. This policy
depends on events (disclosing the user location) and time (every day). As opposed to
static policies, this type of privacy policies is not present in any OSN today. Using
dynamic privacy policies relates to Problem ii) presented in Section I.1, and can be
used to address some of the concerns raised by Bauer et al. in [6]. For instance, users
could specify a policy saying that “whenever someone makes a sexist comment in one
of my post, reduce the audience of the post to nobody”, or “reduce the audience of posts
that have been uploaded for more than two months to family only”.

On the one hand, we focus on specifying dynamic privacy policies. Chapter VI
presents a temporal logic with the operators always and eventually, which allows users
to specify that certain static policy must always hold in a certain interval of time.
Chapter VII introduces a more expressive logic where the knowledge operator includes
a time-stamp, thus increasing its expressiveness, and making it possible to write, e.g.,
“Yesterday Alice knew the location of Bob on Saturday”. The logic presented in Chap-
ter VII subsumes that of Chapter VI.

On the other hand, in Chapter V we provide a runtime enforcement mechanism for
dynamic privacy policies. The enforcement mechanism is implemented as a monitor
that runs in parallel with the OSN. The monitor observes the events that occur in the
system and switches on and off static privacy policies accordingly.

Introduction 11

Unification of privacy policies and data

In Chapter VIII we study how to use Attribute-Based Encryption (ABE) [46, 79] to
“stick” privacy policies to pictures in OSNs. Users in the OSN are assigned with at-
tributes. An attribute in our setting is, for instance, being friends. Imagine that Alice
is a friend of Bob, then Alice will have the attribute friend(Bob). When a user shares
a picture, before uploading it to the OSN server, the system encrypts the picture in
a way that only users with the specified attribute can see it. For example, Bob could
specify that “only my friends can see my pictures”, that is, users that have the at-
tribute friend(Bob). In the OSN database, the picture that is encrypted, therefore the
OSN provider cannot visualise it. The encrypted picture can now move around the
distributed database together with the policy. When another user access the resource,
say Alice, she gives to the decryption algorithm all her attributes. If friend(Bob) is
among them she will be able to visualise the picture, otherwise she will only access the
ciphertext. Note that using this approach we solve Problem iii) (cf. Section I.1).

I.3.1 Thesis Outline

This section briefly outlines the content of each individual chapter and states the con-
tribution of the author in the corresponding paper.

Chapter II: A Privacy Policy Framework for Social Networks. In this chap-
ter we present a privacy policy framework for OSNs. The framework allows users to
write static privacy policies that determine who can access their information. It consists
of a formal model of the OSN, a (propositional) knowledge-based logic, and a formal
privacy policy language based on the previous logic. The framework may be tailored
by providing suitable instantiations of the different relationships, the information that
users can know, and the additional facts or rules a particular OSN should satisfy. Be-
sides, we provide instantiations of Facebook and Twitter in our formalism. We use the
instantiations to model all the available privacy settings in Facebook and Twitter today.
Furthermore, we provide a number of richer privacy policies which neither Facebook
nor Twitter implement.

Statement of contributions: This paper was co-authored with Gerardo Schneider.
Raúl was responsible for the development of the theory of social networks models, the
knowledge-based language and the privacy policy language. Moreover, Raúl wrote the
instantiation of Facebook and Twitter and all their privacy policies in the framework.

This paper was published in the proceedings of the 12th edition of the International
Conference on Software Engineering and Formal Methods (SEFM) 2014.

12

Chapter III: Formalising Privacy Policies in Social Networks. In this chapter
we extend the framework presented in Chapter II. First, we lift the knowledge-based
logic and privacy policy language from propositional to first-order, thus, increasing its
expressiveness. Second, agents are enhanced with a reasoning engine allowing for the
inference of knowledge from previously acquired knowledge. This allows us to encode
possible inferences that users can perform when accessing various pieces of information.
The engine uses the standard axioms from epistemic logic. To describe the evolution
of the OSN, we use operational semantics rules. These rules are classified into four
categories: epistemic, topological, policy, and hybrid, depending on whether the events
under consideration change the knowledge of the OSN users, the structure of the social
graph, the privacy policies, or a combination of the above, respectively. We formally
introduce a notion of privacy preserving OSN. That is, an OSN where there is no
sequence of events that can eventually violate a privacy policy. We provide specific
rules for describing the behaviour of Twitter, and prove that it is privacy-preserving
with respect to the set of privacy policies that the OSN offers today. We also show that
Twitter and Facebook are not privacy-preserving in the presence of additional natural
privacy policies.

Statement of contributions: This paper was co-authored with Musar Balliu and
Gerardo Schneider. Raúl was responsible for the development of the theory regarding
the extensions to the logic and the policy language; the dynamic part of the framework,
that is, operational semantics rules, the underlying labelled transition system; and the
concept of privacy-preserving OSN. Moreover, Raúl instantiated Twitter and Facebook
and wrote the proofs of privacy-preservation in both OSNs.

This paper was published in the Journal of Logical and Algebraic Methods in Pro-
gramming (JLAMP) 2017.

Chapter IV: Model Checking Social Network Models. Our privacy policy
framework is based on a knowledge-based logic very similar to epistemic logic [29].
The semantics of epistemic logic makes use of Kripke models whereas our knowledge-
based logic uses social network models (SNMs). SNMs are social graphs enriched with
knowledge bases containing the information that the agents know. The properties of
knowledge in epistemic knowledge have been studied for decades and are well under-
stood. For SNMs, however, there is no characterisation of what knowledge properties
hold. We show that the properties of knowledge that are sound with respect to Kripke
models are also sound with respect to SNMs. We give a satisfaction-preserving en-
coding of SNMs into canonical Kripke models, and we also characterise which Kripke
models may be translated into SNMs. We prove that the model checking problem for
SNMs is decidable. Finally, we show that, for SNMs, the model checking problem is

Introduction 13

computationally cheaper than the one based on standard Kripke models.
Statement of contributions: This paper was co-authored with Gerardo Schneider.

Raúl developed the transformation functions from Kripke models to SNM and vice versa;
the proofs of soundness of the knowledge properties of epistemic logic and decidability
of the model checking algorithm; and the formal complexity comparison of the model
checking problem in SNMs and Kripke models.

This paper was published in the proceedings of the 8th International Symposium on
Games, Automata, Logics, and Formal Verification (GandALF) 2017.

Chapter V: An Automata-based Approach to Evolving Privacy Policies for
Social Networks. In this chapter we present a runtime monitoring system that ac-
tives static privacy policies depending on time and events. In particular, we introduce
a novel formalism, policy automata, which is a transition system where static privacy
policies may be defined per state. The approach is policy agnostic, hence it can be
applied to any OSN which has an enforcement mechanism for static privacy policies
such as Facebook, Twitter, Instagram, Snapchat and so on. We provide a proof-of-
concept implementation for the distributed social network Diaspora using the runtime
verification tool Larva to synthesise policy enforcement monitors.

Statement of contributions: This paper was co-authored with Christian Colombo,
Gordon J. Pace and Gerardo Schneider. Raúl contributed to the definition of the pol-
icy automata theory, developed the proof-of-concept implementation in Diaspora, and
wrote all the proofs in the paper.

This paper was published in the proceedings of the 16th International Conference
on Runtime Verification (RV) 2016.

Chapter VI: Specification of Evolving Privacy Policies for Online Social Net-
works. In this paper we extend the framework presented in Chapter III to express
dynamic (and recurrent) privacy policies that are activated or deactivated by context
(events) or time. First, we add temporal operators to the knowledge-based logic to
express properties based on traces representing the evolution of the OSN. Second, we
introduce a new learning modality that allows for reasoning about the moment in time
when a user learnt something. Third, we extend the privacy policy language to spec-
ify intervals of time when the policies must be enforced, and also include the learning
modality as part of the syntax. Policies, and formulae in the logic, are interpreted over
(timed) traces representing the evolution of the OSN. Finally, we prove that checking
privacy policy conformance, and the model-checking problem for the knowledge-based
logic are decidable.

14

Statement of contributions: This paper was co-authored with Ivana Kellyérová,
César Sánchez and Gerardo Schneider. Raúl was responsible for the development of the
extensions to the logic, the privacy policy language, and the notion of traces. He also
contributed to the decidability proofs.

This paper was published in the proceedings of the 23rd International Symposium
on Temporal Representation and Reasoning (TIME) 2016.

Chapter VII: Timed Epistemic Knowledge Bases for Social Networks. In
this chapter we present a version of the framework presented in Chapter III which in-
cludes a knowledge-based logic that allows for reasoning not only about information
available to the different agents, but also about the moments at which events happen
and new knowledge is acquired or deduced. To do this, we add time-stamps in pred-
icates and modalities. Time-stamped predicates indicate the active time of a piece of
information, e.g., “location of Bob on Monday at 20:00”. Time-stamped modalities
indicate when users know something, for instance, “Yesterday Alice know the location
of Bob on Monday at 20:00”. In this logic we include both an epistemic modality and a
belief modality. By using these operators we can differentiate between true knowledge
and beliefs that come from disclosure of information that may not be accurate.

As in Chapters II,III and VI, our ultimate goal is to develop a privacy policy lan-
guage. The logic described in this chapter is used as a basis for a privacy policy language
more expressive than the ones presented in previous chapters. Furthermore, the logic
presented in this chapter subsumes that of VI. We show that the learning modality and
temporal operators introduced in Chapter VI become derived operators in this logic.
Policies and formulae in the logic are interpreted over timed traces representing the
evolution of the OSN.

Finally, we present an algorithm for deducing knowledge, which can also be instan-
tiated with different variants of how the epistemic information is preserved over time.
This algorithm is used to model the deductive engine of the agents in our framework.

Statement of contributions: This paper was co-authored with César Sánchez and
Gerardo Schneider. Raúl was responsible for the definition of the new knowledge-based
logic, privacy policy language and the timed deduction rules for users knowledge.

This paper is currently under submission.

Chapter VIII: Secure Photo Sharing in Social Networks. In this chapter
we propose a practical solution to secure photo sharing in OSNs. Our approach as-
sumes nothing about the architecture of the OSN which can be either centralised or
distributed. This solution solves the inconsistencies that appear in distributed OSNs—
and distributed data stores for centralised OSNs—as a consequence of treating photos

Introduction 15

and access policies separately. For instance, when updating an access policy, it is not
instantly replicated in all the nodes of the system; some nodes may contain the old
access policy, and, consequently, it is possible to disclose information to an undesired
audience. We propose a solution to this problem based on attaching access policies to
photos so that, each time a photo is re-shared, the access policy travels together with
the photo. In order to attach a policy to a photo we use Attribute-based Encryption.
Attributes in OSNs are the social relationships between users that are defined in the
social graph.

We tested our solution on the distributed OSN Diaspora. We tried different con-
figurations: one server (centralised mode) and more than three servers (decentralised
mode). We also used different number of attributes to check whether the system’s per-
formance deteriorates as the number of attributes increases. We consider OSNs with a
hundred attributes and up to twelve attributes per access policy. The evaluation shows
that our solution can encrypt/decrypt photos in less than two seconds.

Statement of contributions: This paper was co-authored with Pablo Picazo-
Sánchez and Gerardo Schneider. Raúl contributed to the design of the system and
implemented the proof-of-concept prototype in Diaspora.

This paper was published in the proceedings of the 32nd International Conference
on ICT Systems Security and Privacy Protection (IFIP SEC) 2017.

16

17

Chapter II

A Formal Privacy Policy
Framework for Social
Networks
Raúl Pardo and Gerardo Schneider

Abstract. Social networks (SN) provide a great opportunity to help people interact
with each other in different ways depending on the kind of relationship that links them.
One of the aims of SN is to be flexible in the way one shares information, being as
permissive as possible in how people communicate and disseminate information. While
preserving the spirit of SN, users would like to be sure that their privacy is not compro-
mised. One way to do so is by providing users with means to define their own privacy
policies and give guarantees that they will be respected. In this paper we present a pri-
vacy policy framework for SN, consisting of a formal model of SN, a knowledge-based
logic, and a formal privacy policy language. The framework may be tailored by pro-
viding suitable instantiations of the different relationships, the events, the propositions
representing what is to be known, and the additional facts or rules a particular social
network should satisfy. Besides, models of Facebook and Twitter are instantiated in
our formalism, and we provide instantiations of a number of richer privacy policies.

18 Chapter II

A Formal Privacy Policy Framework for Social Networks 19

II.1 Introduction
A social network is a structure made up of a set of agents (individuals or organisations),
which are connected via different kinds of relationships. People and organisations use
social networks (SN) to interact on a peer-to-peer manner and also to broadcast infor-
mation related to themselves or others with selected subgroups of other agents. Users
expect that social network services (SNS) provide flexibility and easy-to-use interfaces
for achieving the intended objectives in a fast and reliable manner. This flexibility, how-
ever, comes with the potential problem of compromising organisations’ and individuals’
privacy.

Privacy in SN may be compromised in different ways: from direct observation of
what is posted (seen by non-allowed agents), by inferring properties of data (metadata
privacy leakages), indirectly from the topology of the SN (e.g., knowing who our friends
are), to more elaborate intentional attackers such as sniffers or harvesters [35]. In
this paper we are mainly concerned with the first 3 kinds of privacy issues. In order
to tackle them, we look into the problem of defining a formal language for writing
rich privacy policies in the context of social networks. We aim at defining a privacy
policy language able to express at least the following (kinds of) policies: i) All privacy
policies currently supported by existing SN like Facebook; ii) Privacy policies describing
properties on attributes, i.e. not only coarse-grained properties as the fact that someone
has post something, but about the content of the post itself; iii) Conditional privacy
policies, which depend on the amount of current knowledge or permissions in the SN;
iv) Privacy policies based on knowledge in a group of agents and distributed knowledge
among several agents.

In order to achieve the above we propose a solution based on the definition of a rather
general privacy policy framework that may be specialised for concrete SN instances.
More concretely, our contributions are:

1. We propose a formal privacy policy framework consisting of: i) a generic model for
social networks, formalised as a combination of hyper-graphs and Kripke struc-
tures; ii) the syntax and semantics of a knowledge-based logic to reason about
the social network and privacy policies; iii) a formal language to describe privacy
policies (based on the logic mentioned above), together with a conformance rela-
tion to be able to state whether a certain social network satisfies a given policy.
(Section IV.2.2.)

2. We specify how the above privacy policy framework may be instantiated in order
to be used in practice. (Section III.2.4.)

3. Our definition of instantiated privacy policy framework allows us to model not only

20 Chapter II

existing SN with their corresponding privacy policies, but also richer ones. We
show the expressiveness of our approach by presenting instantiations of Twitter,
Facebook, and richer privacy policies. (Section II.4.)

II.2 Privacy Policy Framework
In this section we define PPF , a formal privacy policy framework for social networks.
The framework is not only able to deal with explicit disclosure of information, but it
also is equipped with internal machinery for detecting implicit knowledge.

Definition 1. The tuple ⟨SN ,KBL,⊨,PPL,⊨C⟩ is a privacy policy framework (de-
noted by PPF), where

• SN �is a social network model;

• KBL is a knowledge-based logic;

• ⊨ is a satisfaction relation defined for KBL;

• PPL is a privacy policy language;

• ⊨C is a conformance relation defined for PPL.

In what follows we define in more detail each of the components of PPF .

II.2.1 The Social Network Model SN
SN is a generic model for social networks representing the topology of the social network,
modelling the different connections between agents, their knowledge, and the actions
they are allowed to perform.

Preliminaries.. Before providing the definition of SN let us define Ag to be a finite
and nonempty set of agents, C a finite and nonempty set of connections, representing
the relations between agents (e.g. friendship, colleague, blocked, restricted), and Σ a
finite and nonempty set of actions, representing what is allowed to be performed by the
agents (e.g. posting, looking up an agent). Also, let Π be a finite set of privacy policies
defined by

Π = {JψjKi | i ∈ Ag, j ∈ {1, 2, . . . , ni} and ψj ∈ PPL}

containing all the privacy policies for each agent i (there are ni privacy policies for each
agent i, if ni = 0 then there is no privacy policy associated with agent i).

A Formal Privacy Policy Framework for Social Networks 21

Definition 2. Given a nonempty set of propositions P, we define a social network
model SN to be a hypergraph of the form ⟨W, {Ri}i∈C , {Ai}i∈Σ, ν,KB, π⟩, where

• W is a nonempty set of possible worlds. Every world represents one of the agents
defined in the set Ag.

• {Ri}i∈C is a family of binary relations Ri ⊆ W × W , indexed by connections.
Given agents x, y ∈W , we write xRiy iff (x, y) ∈ Ri.

• {Ai}i∈Σ is a family of binary relations Ai ⊆ W ×W , indexed by actions. Given
agents x, y ∈W , we write xAiy iff (x, y) ∈ Ai.

• ν is a valuation function returning the set of propositions which are true in a given
world (i.e. ν :W → 2P).

• KB is a function giving the set of accumulated non-trivial knowledge for each
agent, stored in what we call the knowledge base of the agent. 1

• π is a function returning the set of privacy policies defined for a given agent (i.e.
π :W → 2Π).

We define a bijective function between agents and worlds AW : Ag →W ; hereafter
we will interchangeably refer to elements of W as worlds or agents. We will sometimes
use the indexes to denote the corresponding connections. So, given C to be the set
{Friendship, Colleague}, then instead of writing RFriendship and RColleague we will
write Friendship and Colleague respectively. In addition we define SN |c to be the
projection over the connection c ∈ C for a given social network model SN , as the graph
SN |c = ⟨W,Rc⟩, whereW is the set of worlds of SN andRc is the binary relation defined
in SN for the connection c. Finally, given a set of agents G ⊆ Ag and a projection
SN |c, we define the following predicate clique(SN |c, G) iff ∀i, j ∈ G. iRcj ∧ jRci.

Example 1. We illustrate how a small fragment of a generic social network could be
modelled according to definition 2. The SN consists of: i) 4 agents, Ag = {A,B,C,D};
ii) a set of 3 connections, C = {c1, c2, c3}; iii) the set Σ = {a1, a2}, representing the
actions allowed among users.

A graphical representation of the defined social network is given in Fig. II.1a. The
dashed line and the plain line represent the c1 and c2 relations, respectively. They are
not directed because we assume these relations are symmetric. On the other hand, the
c3 relation (represented by a dotted line) relates only B and C, and it is directed.

1We will formally define this function in subsection III.2.2, since its definition requires a formal
specification of KBL subformulae.

22 Chapter II

p
1

p
1

p
3

p
4

p
7

p
2
 p

4

 p
6

A B

DC

c
1

c
1

c
2

c
2 c 3

a
1

a
2

(a) Example of a generic SN

c.location
c.location
a.birthday

a.post
a.street

c.like
a.post
b.street

Alice Bob

Daniel
Charlie

Friendship

Friendship

Colleague

Colleague

Blo
cked

lookup

friendRequest

(b) FPPFI of a Facebook-like SN

Figure II.1: Examples of social network models

The allowed actions are represented by the dashed and dotted directed arrows. Actions
represent interaction between 2 agents. In the example, action a1 has D as source and B
as target. Associated to each world there is a set of propositions over {p1, p2, . . . , p7} ⊆ P
explicitly representing basic knowledge of the agent. For instance, in Fig. II.1a it is
shown that agent C knows p4 and p7.

II.2.2 The knowledge-based logic for social networks KBL

We define here a logic for representing and reasoning about knowledge. We give seman-
tics to the logic KBL over a knowledge-based representation built on top of the social
network model SN .

Definition 3. Given i, j ∈ Ag, a ∈ Σ, p ∈ P, and G ⊆ Ag, the knowledge-based logic
KBL is inductively defined as:

γ ::= ¬γ | γ ∧ γ | ψ | φ
ψ ::= P ji a | GP jGa | SP jGa
φ ::= p | φ ∧ φ | ¬φ | Kiφ | EGφ | SGφ | DGφ.

The intuitive meaning of the modalities is as follows.
• Kiφ (Basic knowledge): Agent i knows φ.
• EGφ (Everyone knows): Every agent in the group G knows φ.
• SGφ (Someone knows): At least one agent in the group G knows φ.
• DGφ (Distributed knowledge): φ is distributed knowledge in the group of agents
G (i.e. the combination of individual knowledge of the agents in G).

A Formal Privacy Policy Framework for Social Networks 23

SN, u ⊨ ¬p iff ¬p ∈ ν(u)
SN, u ⊨ p iff p ∈ ν(u)
SN, u ⊨ ¬φ iff SN, u ̸⊨ φ
SN, u ⊨ φ ∧ ψ iff SN, u ⊨ φ and SN, u ⊨ ψ

SN, u ⊨ Kiδ iff
{
δ ∈ KB(i) if δ = Kjδ

′,where j ∈ Ag
SN, i ⊨ δ otherwise

SN, u ⊨ P ji a iff (i, j) ∈ Aa
SN, u ⊨ GP jGa iff (n, j) ∈ Aa for all n ∈ G

SN, u ⊨ SP jGa iff there exits n ∈ G such that (n, j) ∈ Aa
SN, u ⊨ SGδ iff there exits i ∈ G such that SN, i ⊨ Kiδ
SN, u ⊨ EGδ iff SN, i ⊨ Kiδ for all i ∈ G

SN, u ⊨ DGδ iff
{
SN, u ⊨ SGδ′ and SN, u ⊨ SGδ′′ if δ = δ′ ∧ δ′′
SN, u ⊨ SGδ otherwise

Table II.1: KBL satisfaction relation

• P ji a (Permission): Agent i is allowed to perform action a to agent j.
• GP jGa (Global Permission): All agents specified in G are allowed to perform action
a to agent j.

• SP jGa (Someone is Permitted): At least one agent specified in G is allowed to
perform action a to agent j.

We will denote with FKBL the set of all well-formed formulae of KBL as defined by
the grammar given in above definition. Similarly, FK

KBL will denote those defined by the
syntactic category φ and FP

KBL will denote the subformulae of the logic defined by the
syntactic category ψ. The function giving the knowledge base of an agent, informally
described in section II.2.1, has the following type KB : Ag → 2F

K
KBL . We define in what

follows the satisfaction relation for KBL formulae.

Definition 4. Given a SN = ⟨W, {Ri}i∈C , {Ai}i∈Σ, ν,KB, π⟩, the agents i, j, u ∈ Ag,
a finite set of agents G ⊆ Ag, an action a ∈ Σ, δ ∈ FK

KBL, and φ,ψ ∈ FKBL, the
satisfaction relation ⊨ is defined as shown in Table II.1.

Note that we explicitly add the negation of a proposition. It represents knowing the
negation of a fact (e.g Ki¬p) which is different than not knowing it (i.e. ¬Kip). More-
over, it is important to point out that KBL is not minimal as the last 5 modalities can
be defined in terms of more basic cases as follows: SGδ ≜

∨
i∈GKiδ, EGδ ≜

∧
i∈GKiδ,

GP jGa ≜
∧
i∈G P

j
i a, SP

j
Ga ≜

∨
i∈G P

j
i a and DGδ is already defined in terms of SG as

24 Chapter II

shown in its semantical definition. Note that as the set G is finite, so are the disjunction
and the conjunction for SG, EG, GP jG and SP jG.

Example 2. KBL enables the possibility of reasoning about epistemic and deontic
properties. As stated in SN showed in Example 1, D is allowed to execute a1, which will
affect B. In KBL we can formally check the previous statement by checking satisfaction
of the following judgement: SN,B ⊨ PBD a1.

We can also build more complex expressions in which we actually leverage the rea-
soning power of KBL. For instance, we can check whether the following holds for agent
A:

SN,A ⊨ ¬KB p1 ∧ ¬KCKA p1 =⇒ ¬SPA{B,C} a1,

which means that if agent B does not know p1 and agent C does not know that agent A
knows p1 then it is not permitted for any of the agents B and C to execute the action
a1 to the agent A.

Apart from checking properties in the model, KBL also permits to reason about
certain properties that hold in general. Given a social network SN , i, j ∈ Ag, and
formulae φ,ψ ∈ FK

KBL, we can state and prove the following lemma on the influence of
the individuals knowledge and their combination as distributed knowledge.

Lemma 1. SN, i ⊨ Kiφ ∧Kjψ =⇒ D{i,j}φ ∧ ψ.

II.2.3 The privacy policy language for social networks PPL

KBL is an expressive language for specifying and reasoning about epistemic and deontic
properties of agents in SN models. However, the language is not completely suitable
for writing privacy policies, and thus a different language is needed for this purpose.
Privacy policies in social networks can be seen as explicit statements in which agents
specify what cannot be known about them or what is not permitted to be executed.
The syntax of the privacy policy language PPL is based on that of KBL, but adapted
to express privacy policies.

Definition 5. Given the agents i, j ∈ Ag and a nonempty set of agents G ⊆ Ag, the
syntax of the privacy policy language PPL is inductively defined as follows:

δ ::= δ ∧ δ | Jφ =⇒ ¬ψKi | J¬ψKi
φ ::= ψ | ¬ψ | φ ∧ φ
ψ ::= EGγ | SGγ | DGγ | Kiγ | GP jGa | SP jGa | P ji a | ψ ∧ ψ.
γ ::= p | γ ∧ γ

A Formal Privacy Policy Framework for Social Networks 25

SN ⊨C τ1 ∧ τ2 iff SN ⊨C τ1 ∧ SN ⊨C τ2
SN ⊨C J¬ψKi iff SN, i ⊨ ¬ψ
SN ⊨C Jφ =⇒ ¬ψKi iff SN, i ⊨ φ then SN ⊨C J¬ψKi

Table II.2: PPL conformance relation

PPL may be seen as formed by a subset of formulae definable in KBL wrapped with
the J Ki operator, specifying which agent has defined the privacy policy. As before, we
define FPPL to be the set of PPL well-formed formulae defined as given by the grammar
in the above definition. A basic privacy policy for an agent i, given by δ in definition
9, is either a direct restriction (J¬ψKi) or a conditional restriction (Jφ =⇒ ¬ψKi).
FC

PPL will denote sbuformulae belonging to the syntactic category φ (conditions) and
FR

PPL subformulae of the syntactic category ψ (restrictions). Instead of defining a
satisfaction relation for PPL, we define the following conformance relation to determine
when a SN respects a given privacy policy.

Definition 6. Given a SN = ⟨W, {Ri}i∈C , {Ai}i∈Σ, ν,KB, π⟩, an agent i ∈ Ag, φ ∈
FC

PPL, ψ ∈ FR
PPL and τ1, τ2 ∈ FPPL; the conformance relation ⊨C is defined as shown

in Table III.2.

Example 3. The following are the privacy policies for agent A (cf. Example 1): π(A) =
{J¬S{B,C,D} p1KA, JKB p1 =⇒ ¬PAB a1KA}. The intuitive meaning of the first policy
is that nobody can know p1 (apart from A who is the only agent left in the SN). The
second one means that if agent B knows p1 then she is not permitted to execute the
action a1 to A.

II.3 PPF instantiation
In the previous section we have presented a generic framework for defining privacy
policies in social networks. In order to be usable, the framework needs to be instantiated,
as specified in the following definition.

Definition 7. We say that a PPF is an instantiated privacy policy framework iff an
instantiation for the following is provided:

• The set of agents Ag;

• The set of propositions P (p ∈ P may be given a structure);

• The set of connections C;

26 Chapter II

• The set of auxiliary functions over the above connections;

• The set of actions Σ;

• A set of properties written in KBL (these properties may be seen as assumptions
on the social network);

• A set of constraints over the policies defined in the language PPL.

We write FPPFName for the instantiation of a PPF on a specific social network
Name. In what follows we show an example of instantiation.

Example 4. We present here FPPFFBook-like, an instantiation of the privacy policy
framework given in Example 1 for a Facebook-like social network. (Fig. II.1b shows the
SN for the instantiated FPPF.)
Agents We redefine the set of agents to be Ag = {Alice,Bob, Charlie,Daniel}.
Propositions We define a structure for the propositions, by requiring them to be of

the form owner.attribute (e.g. Alice.street).
Connections. In this particular instantiation we consider only the following connec-

tions: C = {Friendship, Colleague,Blocked}.
Auxiliary functions. The following auxiliary functions (from Ag to 2Ag) will help

to retrieve the corresponding sets associated to the above defined connections:
friends(i) = {u | iRFriendshipu and uRFriendshipi}; blocked(i) = {u | iRBlockedu};
colleagues(i) = {u | iRColleagueu and uRColleaguei}. These functions are notably
useful when writing formulae (both in KBL and PPL), since it allows to refer to
groups of agents defined by their relationships.

Actions. The set of actions is instantiated as Σ = {sendRequest, lookup}.
Assumptions on the SN . Different social networks are characterised by different

properties. We use KBL for defining these properties (or assumptions). In a
Facebook-like social network some attributes are a composition of others. We in-
troduce here the notion of record, that is a complex attribute composed by others.
We assume that the attribute location of an agent is composed by the following
attributes: street, country, and city. Given agents u, i, j, h ∈ Ag and the group
G = {i, j, h} we assume the following property holds:

SN, i ⊨ SG u.country ∧ SG u.city ∧ SG u.street =⇒ DG u.location (II.1)

moreover if i = j = h we can derive the following property:

SN, i ⊨ Ki(u.country ∧ u.city ∧ u.street) =⇒ Ki u.location (II.2)

A Formal Privacy Policy Framework for Social Networks 27

In addition we can also model facts that we assume to be true in the social network.
For example, we could assume that if some information is distributed knowledge
among users who are friends, then this information becomes known to all of them
individually. Formally we say that given a set of agents G ⊆ Ag, an agent u ∈ Ag

and a formula φ ∈ FK
KBL, for all i ∈ G the following holds:

if SN, u ⊨ DGφ and clique(SN |Friendship, G) then SN, i ⊨ Kiφ. (II.3)

Constraints over privacy policies. A common constraint in social networks is that
agents can only write policies about their own data. In PPL it is possible to writeJ¬Kj u.attributeKi where i, j, u ∈ Ag and i ̸= j ̸= u. This policy, defined by agent
i, forbids agent j to know attribute from agent u. Agent i is thus constraining
the accessibility of certain information about an agent other than herself. To solve
this we could add the following constraint: Given an agent i ∈ Ag and her privacy
policies,

∧
j∈1,...,n τj ∈ π(i), where τj = JφKi, if φ = ¬φ′ or φ = φ′′ =⇒ ¬φ′

then it is not permitted that u.attribute ∈ φ′ for any u ∈ Ag. u ̸= i, meaning that
agents can only define policies about their own data. Likewise, users should not
be able to write permission restrictions over other users. In order to address this
issue we extend the previous restriction with the following: given an agent j ∈ Ag,
an action a ∈ Σ and the set G ⊆ Ag, it is not the case for i ̸= j that P jua, SP

j
Ga

or GP jGa ∈ φ′.

For a given instantiation we could prove more properties besides the ones given as
assumptions. The following lemma exemplifies the kind of properties we can prove about
instantiated privacy policy frameworks in general and for FPPFFBook-like in particular.

Lemma 2. Given u ∈ Ag, if SN, u ⊨ DG (u.country∧u.city∧u.street), and assuming
the group of agents G ⊆ Ag are all friends to each other (i.e. clique(SN |Friendship, G)),
then SN ̸⊨C J¬S{Ag\{u}}u.locationKu.
II.4 Case Studies
PPF may be instantiated for various social networks. We show here how to instantiate
Twitter and Facebook. Though our formalisation is expressive enough to fully instan-
tiate the social networks under consideration, due to lack of space we will only show
minimal instantiations which allow us to represent all the existing privacy policies in
the mentioned social networks.

Before going into the details of our instantiation, we describe some preliminaries.
In the rest of the section we will use i, j, u to denote agents (i, j, u ∈ Ag), and G to

28 Chapter II

denote a finite subset of agents (G ⊆ Ag), where Ag is the set of agents registered in the
instantiated social network. Given an attribute att of an agent u (denoted by u.att), we
will sometimes need to distinguish between different occurrences of such an attribute.
In that case we will write u.attη (η ∈ {1, . . . , nu}, with nu being the maximum number
of occurrences of the attribute; by convention, if there are no occurrence of u.att, we
have that nu = 0). For example, if we assume that agent u’s location changes and we
want to refer to these different locations we will write u.locationη.

II.4.1 Twitter privacy policies
Twitter is a microblogging social network. Users share information according to the
connections established by the follower relationship, which permits (depending on the
privacy policies) a user to access the tweets posted (or tweeted) from the followed user.
Users interact by posting (or tweeting) 140 characters long messages called tweets. Let
us define the instantiation FPPFTwitter as follows.
Propositions. The proposition in FPPFTwitter are defined by the set

P = {owner.email, owner.locationi, owner.tweetj , owner.retweettweetRef}
where owner ∈ Ag, and attributes are the following: email, is the user’s email;
locationη represents a location of a given user ; tweetη the tweets a given user
has tweeted; and retweettweetRef representing the fact or retweeting (or sharing
a tweet already tweeted by another user) where tweetRef is the reference to the
original tweet.

Connections. The set of connections only includes the follower relationship, C =

{Follower}.
Auxiliary functions. We define the function

• followers(i) = {u | u ∈ Ag ∧ iRFolloweru}
which returns all the agents u who i is following.

Actions. Actions are defined as Σ = {tweet, lookup, sendAd}, where tweet represents
tweeting (posting a tweet), lookup represents the possibility of reaching a user’s
profile and sendAd sending an advertisement to a user.

Twitter does not have a large amount of privacy policies since the aim is to make infor-
mation accessible to as many people as possible. Yet there are important considerations
concerning privacy. These policies are specified in FPPFTwitter as follows.

• Protect my Tweets: Two cases: i) Only those in u’s group of followers can see
her tweets: J¬S{Ag\followers(u)\{u}} u.tweetηKu; ii) Only u’s followers may see her
retweets: J¬S{Ag\followers(u)\{u}}u.retweettweetRef Ku.

• Add my location to my tweets: Twitter provides the option of adding the agents’
location to their tweets. The following policy specifies that nobody can see the

A Formal Privacy Policy Framework for Social Networks 29

user’s locations: J¬S{Ag\{u}} u.locationηKu.
• Let others find me by my email address: J¬Ki u.email =⇒ ¬Pui lookupKu, mean-

ing that if an agent i does not know u’s email, then she is not allowed to find u
by looking her up.

• Tailor ads based on information shared by ad partners: Assuming G to be the
group of ads partners, the policy is defined as J¬SPuG sendAdKu, meaning that
none of the advertisement companies taking part in the system is able to send
advertisements to user u.

II.4.2 Facebook privacy policies
Facebook is a social network system in which people share information by means of posts.
Each user owns a timeline which contains all her posts and information about the main
events which can be handled by the social network (e.g. birthday, new relationships,
attendance to events). The main connection between users is friendship, though it is
possible to create special relations.

We show here the instantiation FPPFFacebook. Since we are modelling just the parts
of Facebook relevant for defining privacy policies, we borrow the set C from the instan-
tiation presented in Example 4. We also borrow the set of auxiliary functions and we
add friends2(i) =

∪
j∈friends(i) friends(j); it allows us to write formulae about friends

of friends. We extend the set Σ with the action postT imeline (representing posting on
a user’s timeline), and the actions inviteEvent, inviteGroup and tag, which represent
sending an invitation to join an event or a group and being tagged on a picture. As
for the structure of the propositions, we define the set P = {owner.postjη, owner.likeη,
owner.location, owner.phone, owner.email} where owner ∈ Ag, owner.postjη represents
the posts owner posted on the j’s timeline (e.g. Alice.postBob1 is the first post of Al-
ice in Bob’s timeline), owner.likeη are the posts owner has liked and owner.location,
owner.phone and owner.email are, respectively, the actual location, phone and the
email attributes of owner. Similarly to FPPFTwitter, we do not specify properties for
the SN nor restrictions over policies.

Privacy Settings and Tools

In what follows we go through all privacy policies a user can define in the section
‘Privacy and Tools’ of Facebook, and we provide their formalisation in FPPFFacebook.
The policies are defined depending on the set of users which they affect.

Who can see my stuff?. In the first section Facebook enables users to set a default
audience for their posts. In FPPFFacebook we can formally specify these restrictions as

30 Chapter II

follows:

• (Public) no policy since everyone is able to access the posts;

• (Friends) J¬S{Ag\friends(u)\{u}}u.post
j
nKu;

• (Only me) J¬S{Ag\{u}}u.post
j
nKu;

• (Custom) J¬S{G}u.post
j
nKu.

The intuition behind these policies is specifying the group of agents who are not allowed
to know the information about u’s posts.

Who can contact me?. In a second section users are provided with the possibility
of deciding who can send them friend requests:

• (Everyone) No need of privacy policy;

• (Friends of Friends) J¬SPu{Ag\friends2(u)}requestKu;
note that we specify who cannot send the friend request, which in this case are the
agents who are not in the group of friends of friends.

Who can look me up?. Finally, a user can be looked up by its email address or
phone number. Given a ∈ {phone, email}, specified as

• (Everyone) No privacy policy is needed;

• (Friends of Friends) J(¬Ki u.a =⇒ ¬Pui lookup)Ku where i ∈ friends2(u) andJ(¬SPu{Ag\friends2(u)\{u}}lookup)Ku;
• (Friends) J¬Ki u.a =⇒ ¬Pui lookupKu ∧ J¬SPu{Ag\friends(u)\{u}}lookupKu, where
i ∈ friends(u).

Timeline and Tagging

Besides the previous policies, Facebook allows to define a set of policies related with
who can post on our wall and how to manage our tags. We show now their formalisation
in FPPFFacebook.

Who can post on my timeline.. Facebook offers the possibility of controlling the
people allowed to write in a user’s wall:

• (Only me) J¬SPu{Ag\{u}}postT imelineKu;
• (Friends) J¬SPu{Ag\friends(u)\{u}}postT imelineKu.

A Formal Privacy Policy Framework for Social Networks 31

Who can see things on my timeline?. In Facebook it is possible to establish a
bounded audience for the posts located in a user’s wall. We formally define the privacy
policies as:

• (Everyone) No privacy policy needed;

• (Friends of friends) J¬S{Ag\friends(u)\friends2(u)\{u}}i.post
u
nKu (implicitly includes

friends);

• (Friends) J¬S{Ag\friends(u)\{u}}i.post
u
nKu;

• (Only me) J¬S{Ag\{u}}i.post
u
nKu;

• (Custom) J¬S{Ag\G\{u}}i.post
u
nKu.

Manage blocking

Facebook offers the possibility of restricting or blocking the access to our information
to a predefined set of users. It also allows to block users from doing more concrete
actions as sending apps invitations, events invitations or apps. This is done by defin-
ing blocked and restricted users. Since these policies are similar, we define only the
policies related with blocked users. Facebook defines blocking as ‘Once you block
someone, that person can no longer see things you post on your timeline, tag you,
invite you to events or groups, start a conversation with you, or add you as a friend’
we formally define the previous statement in FPPFFacebook with the following set of
privacy policies. A blocked user cannot: i) see things you post on your time line:J¬SBlocked(u) u.postuηKu; ii) tag you: J¬SPuBlocked(u) tagKu; iii) invite to events or to
join groups: J¬SPuBlocked(u) inviteEventKu ∧ J¬SPuBlocked(u) inviteGroupKu; iv) send a
friend request: J¬SPuBlocked(u) sendRequestKu.
II.4.3 More complex policies
We have shown how to specify all the privacy policies of Twitter and Facebook. We
show here how to express other policies, which the aforementioned SN do not offer.

A more expressive language

One of the advantages of PPF is its flexibility when defining the structure of the
propositions. It allows us to talk about any information related to the users, which
is present in the system. For instance, as it has been seen in the Facebook privacy
policies, the user cannot control any information about what she likes. The normal

32 Chapter II

behaviour is to assign the same audience of the post she liked (clicking the ‘like’ button
on the post). In order to express policies about it, we can leverage the structure of
the propositions of FPPFFacebook by using the attribute likeη. The privacy policyJ¬S{Ag\friends(u)} u.likeηKu means that only u’s friends can know what u liked.

Similar to retweet, in Facebook one can share a given post. Similarly to liking,
sharing is available to the same audience as the post, but sharing entails the consequence
of expanding the audience of the post. Specifically, all people included in the audience of
posts of the user who is sharing will be added to the original audience of the re-shared
post. In FPPFFacebook we could prevent this by explicitly restricting the audience
of our posts as we did in Who can see my stuff? or by writing (assuming Σ to be
extended with the action share) J¬SPufriends(u)shareKu, where explicitly is stated who
could share my posts but without limiting their audience.

We have seen in Lemma 2 how distributed knowledge could be used to make some
inference on the knowledge of certain agents. Its use for defining privacy policies would
allow social network users to control information which could be inferred by a group
of agents. For instance, an agent u ∈ Ag could define the policy JKi u.location =⇒
¬D{friends(u)\{i}} u.locationKu for a given agent i ∈ friends(u), meaning that if one of
u’s friends already know u’s location then the distributed knowledge between the rest
of u’s friends is not allowed. This example also exposes the usefulness of conditional
privacy policies.

Interaction among several social networks

SN usually focusses on one particular kind of leisure. For instance, Twitter and Face-
book both focus on sharing information among followers and friends, while others have
a completely different focus, e.g. Spotify (music), Instagram (photos), and Youtube
(videos). We have so far shown how to formalise single SN. We discuss in what follow
some examples of privacy policies involving more than one social network.

For example, in Twitter it is possible to connect the account to a Facebook ac-
count. If a user enables it, she can choose to post her tweets and retweets on her
Facebook timeline. The idea is that permissions should be set allowing or disallowing
Twitter to post on a user’s Facebook timeline. Due to the expressivity of PPF we
can create an instantiation being the composition of Facebook and Twitter. For in-
stance, if we combine FPPFTwitter and FPPFFacebook, assuming a common set of
agents Ag, and the union of the connections, auxiliary functions, actions, assumptions
and restrictions over policies of both SN, we can write the following privacy policy:J¬S{Ag\(friends(u)∩Followers(u))\{u}} u.locationKu. That is, only agents who are follow-
ers of u in Twitter, and friends in Facebook are allowed to know u’s location. More

A Formal Privacy Policy Framework for Social Networks 33

complex properties of this kind could be formalised in PPF .

II.5 Related Work
The approach we have followed in this paper has been to formally define privacy poli-
cies based on a variant of of epistemic logic [29], where it is possible to express the
knowledge of multi-agent systems (MAS). One way to give semantics to the logic is to
use possible worlds semantics (also known as Kripke models), where it is not explicitly
represented what the agents know, but rather the uncertainty in their knowledge. This
has the advantage of allowing to represent complex formulae about who knows what
(including nesting of knowledge and other operators generalising the notion). Another
way to give semantics to epistemic logic is to use interpreted systems which represents
agent’s knowledge as a set of runs (computational paths). Both ways of giving seman-
tics come with advantages and disadvantages: Kripke models come with a heritage
of fundamental techniques allowing to prove properties about the specification, while
interpreted systems are quite intuitive to model MAS [55]. The common key in both
approaches is modelling the uncertainty of the agent by using an equivalence relation.
If one thinks about all the worlds that a given agent could consider possible in a social
network system, it is easy to see that modelling them would lead to creating an enor-
mous state space. Instead of modelling uncertainty we explicitly store what the agents
know. This allows a more concise representation of the individuals’ knowledge. Unlike
previous work on epistemic logic, in our formalism worlds represent agents.

Moreover we explicitly model a restricted version of permission, i.e. our model ex-
plicitly shows which actions are allowed to be executed by the agents. Aucher et al. [3]
show a different way of combining epistemic and deontic aspects in logic. They preserve
the equivalence relation for epistemic properties and use an extra equivalence relation
for representing permission. The logic is quite expressive but it suffers from the afore-
mentioned state explosion problem. Furthermore the framework is defined as a mono
agent system not being suitable for SN. We took their idea of combining epistemic and
deontic operators in one language, but we restricted the semantic model according to
the needs of SN.

In [84] Seligman et al. present a language based on epistemic logic, with the tradi-
tional Kripke semantics for the logic extended with a friendship relationship. By doing
that they are able to reason about knowledge and friendship. Moreover they model a set
of events using general dynamic dynamic logic (GDDL) by defining an update operation
over the mentioned Kripke model. This enables the possibility of update the model as
the events in the social network occur. Using GDDL they implement the concept of

34 Chapter II

public and private announcement, which appear regularly in the communications among
the agents. Although this approach is quite expressive, its focus is not on privacy or se-
curity issues, but in reasoning about the general knowledge of the agents. As mentioned
before it comes with the price of having a immense state space and it complicates a
practical implementation and the definition of an efficient (computationally speaking)
model checking algorithm. Ruan and Thielscher [80] present a very similar formalism,
but only public announcement is defined. Their focus is not on privacy either, but in
the analysis of the “revolt or stay at home” effect, i.e. how the knowledge is spread
among the agents.

There are other approaches for privacy not based on epistemic logic. One of the most
interesting is Relationship-based access control (REBAC) [31]. The main difference with
epistemic logic is that in REBAC the reasoning is focused on the resources own by the
agents of the system. This approach is highly suitable for a practical implementation of
a policy checking algorithm. On the other hand their approach would not detect certain
kind of implicit knowledge flow. For instance, certain information about a user can be
known after a friend of her is posting some information about both. The formalism is
equipped with a formal language based on hybrid logic [12].

Datta et al. present in [20] the logic PrivacyLFP for defining privacy policies based
on a restricted version of first-order logic (the restriction concerns that quantification
over infinite values is avoided by considering only relevant instances of variables). The
logic is quite expressive as it can represent things others than the kind of policies we
are aiming at in this paper (their application domain being medical data). Though
promising as a formalism for SN, the authors write that the logic might need to be
adapted in order to be used for online social networks. To the best of our knowledge
this has not been done.

II.6 Final Discussion
We have presented in this paper a framework for writing privacy policies for social
networks. Our approach allows for the instantiation of the framework to formalise
existing social networks, and other more complex privacy policies. One particularity
of our approach is that worlds represent agents, closely following the structure of real
social networks.

This paper is a first step towards a full formalisation of privacy policies for social
networks. Our current and future work includes: Adding real-time: So far we cannot
express policies with deadlines. This might be interesting in case policies are transient
(e.g., “nobody is permitted to know my location during the first two weeks of May”).

A Formal Privacy Policy Framework for Social Networks 35

Modeling dynamic networks: The model we have of social networks is static, as
well as the conformance relation between policies and the network. In practice the
social network evolves, new friends come into place, others are blocked, etc. We aim
at extending our formal model to capture such temporal aspect. Adding roles and
ontologies: Agents in the SN could play different roles, e.g. individuals, companies,
advertisement, etc. Providing PPF with the ability of detecting these roles would
enhance its expressivity. Developing an enforcing mechanism: We have not men-
tioned how the policies might be enforced at runtime. We will explore how to extract
a runtime monitor from the policy. Finally, we would like to explore the application of
privacy-by-design [44] to a formalisation of social networks.

36 Chapter II

37

Chapter III

Formalising Privacy Policies in
Social Networks
Raúl Pardo, Musard Balliu and Gerardo Schneider

Abstract. Social Network Services (SNS) have changed the way people communicate,
bringing many benefits but also new concerns. Privacy is one of them. We present a
framework to write privacy policies for SNSs and to reason about such policies in the
presence of events making the network evolve. The framework includes a model of
SNSs, a logic to specify properties and to reason about the knowledge of the users
(agents) of the SNS, and a formal language to write privacy policies. Agents are en-
hanced with a reasoning engine allowing the inference of knowledge from previously
acquired knowledge. To describe the way SNSs may evolve, we provide operational
semantics rules which are classified into four categories: epistemic, topological, policy,
and hybrid, depending on whether the events under consideration change the knowledge
of the SNS’ users, the structure of the social graph, the privacy policies, or a combi-
nation of the above, respectively. We provide specific rules for describing Twitter’s
behaviour, and prove that it is privacy-preserving (i.e., that privacy is preserved under
every possible event of the system). We also show how Twitter and Facebook are not
privacy-preserving in the presence of additional natural privacy policies.

38 Chapter III

Formalising Privacy Policies in Social Networks 39

III.1 Introduction
Over the past decade, the use of Social Network Services (SNS) like Facebook and
Twitter has increased to the point of becoming ubiquitous. A recent survey shows that
nearly 70% of the Internet users are active on SNSs [45]. Empirical studies show that
the number of privacy breaches is keeping pace with this growth and users’ requirements
are much higher than the privacy guarantees offered by SNSs [6, 56, 41, 51, 57].
Motivation: In this paper we are concerned with privacy issues in SNSs. According to
Boyd and Ellison [10] SNSs have three distinguishing characteristics that differentiate
them from other services: i) A public profile; ii) A set of connections between users;
iii) The ability for users to see certain information about others they are connected
to, including meta-information such as others’ connections. These features make SNSs
susceptible to privacy breaches at different levels. Though the users of an SNS control
much of the information disclosed about themselves, to date it is not clear whether such
controls match the users’ privacy intentions [26]. An additional concern is whether the
privacy settings currently available in SNSs are suitable for capturing the needs of most
users through a good privacy policy language. Privacy policies should also take into
account that the networks evolve, for instance, when introducing new users or sending
posts to other users. Many desirable privacy policies can already be enforced by SNSs;
for instance, in Facebook users can state policies like “Only my friends can see posts on
my timeline”. Many other policies, however, are not possible to enforce, although they
might be important from a user’s privacy perspective. Again, in Facebook users can
not specify privacy policies like “I do not want to be tagged in pictures by anyone other
than myself” (P1) or “Nobody apart from myself can know my child’s location” (P2).
Although SNSs put more and more effort in improving users’ privacy, the increasing
amount of information that SNSs have to deal with and the continuous policy changes
make this task cumbersome and hard to accomplish.

SNSs use different flavours of access control mechanisms to constrain the access to
some piece of information and thus enforce the privacy policies. In particular, these
mechanism would enforce policies like P1 and P2 by restricting the audience of the
information or by defining the set of users that can perform some action, respectively.
Unfortunately, these solutions come at the price of reducing the amount of information
that can be shared in the SNS, hence making it less usable and attractive. Moreover,
access control is not enough. Consider a Facebook user who sets the default audience
of the pictures to her friends only. In Facebook, whenever a user is tagged on a picture,
the audience of that picture is extended with the friends of the tagged user, hence the
friend-only strategy can easily be infringed by tagging. Many other actions allow for
implicit disclosure of knowledge; e.g. when joining an event users implicitly disclose

40 Chapter III

their location to other participants of the event, or when commenting on a post the
audience of the comment becomes the same as the audience of the post.

Our proposal: Our aim in this paper is to provide a suitable formalism for writing and
reasoning about privacy policies in dynamic SNSs, and to enable a formal assessment
on whether these policies are properly enforced by the SNSs. Our starting point is the
definition of a formal framework for privacy policies consisting of: i) a generic model
for social networks, ii) a knowledge-based logic to reason about the social network and
privacy policies; iii) a formal language to describe privacy policies (based on the logic
above).
Epistemic logic has been successfully used as a formal specification language in many
settings [29, 75, 38]. Here, we advocate that this logic is natural for privacy in SNSs.
We start with first-order logic to represent connections between users and enrich it
with epistemic (K) and deontic (P) operators to express knowledge and permissions,
respectively. For instance, if the logical formula PAliceBob tag specifies that “Bob is per-
mitted to tag Alice in any picture”, then we can write J¬PmeothertagKme to model the
policy P1 above. The wrapper J Kme is used to specify the owner of the privacy pol-
icy, in this case me. Similarly, if SAll location(me) stands for “Someone among all
users in the SNS knows my location”, we can write J¬SAll\{me}location(myChild)Kme
to specify the policy P2. Moreover, we can express more precise policies by nesting
knowledge operators. Suppose Charlie is organising an event ev and he wants both
Alice and Bob to participate; however, Alice will not participate if she knows that Bob
is going. Then, Charlie, who definitively wants Alice to participate, can write the for-
mula J¬KAliceKBobevKCharlie to express the policy “Alice can not know that Bob knows
about the event ev”.

We do not explicitly use the standard Kripke semantics to define satisfaction of a
formula in our logic. Mainly, this is because we aim at providing a model that preserves
the inherent structure of an SNS, whereas Kripke semantics requires a technical machin-
ery that is far from a real model of social networks. Our framework directly captures
the underlying structure of SNSs and thus brings out a faithful model of reality. On the
other hand, we borrow traditional epistemic logic axiomatisations to define a deductive
engine which determines the knowledge of the users. This enables us to, firstly, reuse
existing theorem provers for checking whether a user knows some information, and sec-
ondly, choose weaker axiomatisations of knowledge that in turn are known to be more
efficient to compute [29], thus paving the way for automated enforcement of privacy
policies.

We extend the reasoning machinery with generic operational semantics rules which
are used to model the dynamics of SNSs. The rules are divided in four categories de-

Formalising Privacy Policies in Social Networks 41

pending on how the knowledge, the permissions, the social graph topology, the policy or
a combination of them evolve as the users perform actions. We then give a full instanti-
ation of our framework for Twitter and formally prove that it is privacy-preserving. We
also consider desirable privacy policies that are currently not supported by SNSs, and
show that Twitter is not privacy-preserving under those policies.

Contributions: More concretely, our contributions in this paper are:

1. An epistemic first-order framework FPPF for defining and reasoning about pri-
vacy policies (Section III.2), having the following features: i) A social network
model (SNM), empowered with a deductive engine and closed under an axiom
system for (first-order) epistemic logic, to generate implicit knowledge from exist-
ing knowledge in a knowledge base; ii) A first-order (relational) structure allowing
for the modelling of rich relations and predicates; iii) A non-standard knowledge-
based logic defined with the usual epistemic operators; iv) A formal language for
defining expressive privacy policies, including nested knowledge.

2. A generic operational semantics for describing the behaviour of SNSs. The rules
are of four different types (Section III.3.3): i) Epistemic, concerned with changes
in the knowledge of a user; ii) Topological, concerned with changes in the struc-
ture of the network graph; iii) Policy, concerned with changes in the privacy
policies; iv) Hybrid, a combination of the above three types of rules. We instan-
tiate the generic semantics rules with rules for describing Twitter’s behaviour
(Section III.3.4).

3. A proof that Twitter is privacy-preserving with respect to all modelled events and
privacy policies; a proof that Facebook is privacy-preserving with respect to a
subset of events (Section III.4).

4. A proof that Twitter and Facebook are not privacy-preserving with respect to
new desirable policies (Section III.4).

We are not the first to apply epistemic reasoning in the context of privacy for SNSs.
A precursor of our approach is the framework proposed earlier by two of the authors
in [71]. That framework only considers a static picture of SNSs and, besides the general
template of PPF (see Definition 1), the two are fundamentally different. Our work
redefines PPF entirely and introduces a novel approach to reason about the dynamic
behaviour of SNSs. We use first-order structures enriched with the epistemic modality
to increase the expressiveness of the logic and the policy language. We remark that the
satisfaction relation uses a deductive engine over the user’s knowledge base, which fixes
unnecessary complications in the semantics given in [71]. We discuss the differences
between our work and the work in [71] in more detail in Section VI.4.

42 Chapter III

III.2 Privacy Policy Framework
In this section we present a novel Privacy Policy Framework for social networks. As
we will see, the framework is powerful enough to capture the features of today’s social
networks and at the same time it allows one to reason about privacy policy requirements
of the users in a precise and formal manner. The framework is initially defined for
generic social networks, however, not all SNSs have the same particularities. Due to
this, we introduce the concept of instantiation, and show how to use it to instantiate
Twitter.

The first-order privacy policy framework is equipped with several components. Firstly,
we define models which leverage the well-known model for SNSs, the social graph [27].
We enrich these models with the knowledge and the permission that users have in an
SNS. We represent the knowledge using a first-order epistemic (knowledge-based) struc-
ture, very much in the style of interpreted systems [29], and the permissions as links
between users in the graph, similar to connections. Secondly, we introduce a knowledge-
based logic to reason about the properties of the model. Finally, based on the logic,
we provide an expressive language to write privacy policies. Formally, we define the
framework as follows:

Definition 1 (First-Order Privacy Policy Framework). The tuple ⟨SN ,KBL,⊨,
PPL,⊨C⟩ is a first-order privacy policy framework (denoted by FPPF), where

• SN is the set of all possible social network models;
• KBL is a knowledge-based logic;
• ⊨ is a satisfaction relation defined for KBL;
• PPL is a formal language for writing privacy policies;
• ⊨C is a conformance relation defined for PPL.

High-level overview Figure III.1 provides an overview of the structure and relation
between the components of the framework. The ultimate goal of our work is to define
a privacy policy language, PPL, for writing expressive privacy policies and checking
their satisfaction for a social network model. To this end, we define a conformance
relation, ⊨C , that determines whether a privacy policy is in conformance with a given
social network model. As shown in Figure III.1, the conformance relation relies on the
satisfaction relation ⊨ of a more general logic, KBL. We convert privacy policies to
KBL formulae, since, as we will see, the syntax of PPL is a restricted form of the
syntax of KBL. We define the satisfaction relation ⊨ to check KBL formulae in a social
network model, therefore reducing ⊨C to ⊨. Social network models consist of nodes
that represent users and arrows that represent connections and permissions between
users. We will describe social network models in full detail in the next section. In a

Formalising Privacy Policies in Social Networks 43

PPL - Privacy Policy Language

KBL - Knowledge-based Logic

SN - Social Network Model

⊨C

⊨

⊢

⊢

⊢

PPF - Privacy Policy Framework

Figure III.1: Structure of PPF

nutshell, each node (user) i contains a local knowledge base and a derivability relation
⊢, which we use to determine whether the user i knows some information φ, namely
the satisfaction of formulae Kiφ. We define this by requiring that φ is derivable (using
⊢) from the set of facts in the user’s knowledge base. The derivability relation borrows
the axioms and derivation rules from the S5 axiomatisation defined by Fagin et al. in
[29]. By using the S5 axiomatisation for our notion of derivability (inside the users’
knowledge bases), we can obtain an axiomatisation of the KBL logic that corresponds
to the KD45 axiomatisation and it is sound with respect to social network models [72].
In what follows we provide a detailed description of the components and their relations.

III.2.1 Social Network Models

Social networks are usually modelled as graphs, where nodes represent users—referred to
as agents—and edges represent different kinds of relationships among users, for instance,
friendship or family. These graphs are traditionally called social graphs [27]. A social
network model is a social graph which includes the knowledge that the agents have
accumulated as a set of logic formulae in their knowledge base. Moreover, we model

44 Chapter III

possible inferences of knowledge that the agents can make from the knowledge that they
already possess. Additionally, we use new types of edges to represent certain permission
that the agents may have. We write AU to denote a universe of agents.

Definition 2. Given a set of formulae F , a set of privacy policies Π, and a finite
set of agents Ag ⊆ AU , a social network model (SNM) is a social graph of the form
⟨Ag,A,KB, π⟩, where

• Ag is a nonempty finite set of nodes representing the agents in the SNS.

• A is a first-order structure over the social network model. As usual, it consists of
a set of domains; and a set of relations, functions and constants interpreted over
their corresponding domain.

• KB : Ag → 2F is a function denoting the knowledge base of an agent, namely the
accumulated knowledge of an agent. We write KBi to denote KB(i).

• π : Ag → 2Π is a function specifying the set of privacy policies of each agent. We
write πi for π(i).

In Definition 2, the shape of the relational structure A depends on the type of the
social network under consideration. We represent the connections and the permission
actions between social network agents, i.e., edges of the social graph, as families of
binary relations, respectively {Ci}i∈C ⊆ Ag × Ag and {Ai}i∈Σ ⊆ Ag × Ag over the
domain of agents. We use {Di}i∈D to denote the set of domains. The set of agents Ag
is always included in the set of domains. We use C,Σ and D to denote sets of indexes
for connections, permissions and domains, respectively. Sometimes, we use predicates,
e.g. friends(A,B), to denote that the elements A,B ∈ Ag belong to the binary relation
friends defined over pairs of agents as expected.

We provide agents with reasoning capabilities that allow them to infer new knowl-
edge. For instance, in Facebook, events include the location where the event takes
place. Imagine that Alice knows that Bob is attending an event. Given that the event
information includes the location, she must also know Bob’s location. The reasoning
capabilities for the agents help us to make these type of inferences in the framework.

Since the knowledge of the agents is represented using epistemic logic formulae, we
use standard properties of knowledge to model the reasoning capabilities of agents. We
introduce a set of axioms and rules for an agent to infer new knowledge from the one
present in their knowledge base. In particular, we use the knowledge axiomatisation
S5 from first-order epistemic logic [29, 59]. S5 is a standard and widely used axioma-
tisation for epistemic logic. Moreover, there exist several tools to check validity of

Formalising Privacy Policies in Social Networks 45

epistemic formulae for S5. These tools can be used to implement an enforcement mech-
anism based on our framework. Nevertheless, we are not restricted to S5. Given the
modularity of our approach, we could consider other axiomatisations.

We now define the language for first-order epistemic logic, Ln:

φ ::= p(
#»
t) | φ ∧ φ | ¬φ | ∀x.φ | Kiφ.

where i is an agent from a set of agents Ag and p(#»
t) is a predicate over terms #»

t . For
now it is enough to assume that a term is either a constant symbol, a function symbol
(with implicit arity), or a variable. The intuitive reading for the formula Kiφ is “agent
i knows φ”. Hence we can use predicates to denote concrete pieces of information, e.g.
Bob’s location can be written as location(Bob) and the statement “Alice knows Bob’s
location” can be written as KAlicelocation(Bob).

Now we introduce the set of properties of knowledge as defined by the S5 axiomati-
sation.

Definition 3 (First-Order S5 [29, 59]). Given the formulae φ and ψ written in Ln
and some agent i, the axiom system S5 consists of the following axioms and derivation
rules:

Axioms

(A1) All (instances of) first-order tautologies
(A2) (Kiφ ∧Ki(φ =⇒ ψ)) =⇒ Kiψ

(A12) ∀x1, · · · , xk.Kiφ =⇒ Ki∀x1, · · · , xk.φ

(A3) Kiφ =⇒ φ

(A4) Kiφ =⇒ KiKiφ

(A5) ¬Kiφ =⇒ Ki¬Kiφ

Derivation rules

(Modus Ponens)
φ φ =⇒ ψ

ψ

(Necessitation)
φ

Kiφ
where φ must be provable from no assumptions.

(Generalisation)
φ

∀x.φ(x)
where x does not occur in φ.

46 Chapter III

We also introduce the notion of derivation in the axiom system S5 as follows:

Definition 4 ([59]). A derivation of a formula φ ∈ Ln is a finite sequence of formulae
φ1, φ2, . . . , φn = φ, where each φi, for 1 ≤ i ≤ n, is either an instance of the axioms
(A1, A2, A12, A3, A4 or A5) or the conclusion of one of the derivation rules of which
premises have already been derived, i.e., appear as φj with j < i. Moreover when we can
derive φ from a set of formulae {ψ1, ψ2, . . . ψn}, if we take the set Γ as the conjunction
of all the formulae from the previous set, Γ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn we write Γ ⊢ φ.

Consider again the previous example about Alice and Bob. We can formalise the
statement “Alice knows that if a user is going to an event, then she knows the location
of that user during the event” as

KAlice(going(u, η) =⇒ location(u, η)) (III.1)

for each u ∈ Ag and η ∈ N. Hence if Alice knows that Bob is going to the event η,

KAlicegoing(Bob, η) (III.2)

she can apply the axiom (A2) together with (III.1) and (VI.2) to infer Bob’s location
during the event, i.e., KAlicelocation(Bob, η).

Finally, we introduce the closure function Cl for the axiom system S5, which gen-
erates all the knowledge that agents can infer given the set formulae representing the
explicit knowledge that they already have. This is formally defined as follows:

Definition 5. Given a set of formulae Φ ⊆ Ln the knowledge base closure function is
Cl(Φ) = {φ | Φ ⊢ φ}.

Cl is the closure of an input set of formulae under the axiom system S5. Different
axioms may hold when FPPF is instantiated with a concrete social network model. To
this end we define the minimal Cl using the axioms and derivation rules from S5 and,
in order to provide the agents with more targeted deductive engines, we remain open to
extend this set of axioms. We ensure that the local knowledge of each agent is always
consistent by checking that false is never derived. In Section III.2.4 we will show how
Cl can be extended to meet the requirements of a concrete SNS.

Example 1. Consider an SN ∈ SN which consists of three agents Alice, Bob and
Charlie, Ag = {Alice,Bob,Charlie}; two connections Friendship and Blocked, C =

{Friendship,Blocked}; and a friend request action, Σ = {friendRequest}.
Figure III.2 shows a graphical representation of the aforementioned SN. In this

model the dashed arrows represent connections. Note that the Friendship connection

Formalising Privacy Policies in Social Networks 47

post(Bob, 1)
∀η.(post(Bob, η) =⇒ loc(Bob, η))

Alice

∀x.(bYear(x) ∧ bMonth(x) ∧ bDay(x) =⇒ age(x))
loc(Bob, 1) bMonth(Alice) bDay(Alice)

Bob

loc(Bob, 1)
bYear(Alice)

Charlie

Friendship Blocked

friendRequest

Figure III.2: Example of Social Network Model

is bidirectional, i.e., Alice is friend with Bob and vice versa. On the other hand, it is
also possible to represent unidirectional connections, as Blocked; in SN Bob has blocked
Charlie. Permissions are represented using a dotted arrow. In this example, Charlie is
able to send a friend request to Alice.

The predicates inside each node represent the agents’ knowledge base. In this SNM,
Charlie and Bob have the predicate loc(Bob, 1)1 in their knowledge bases, meaning that
they both know location number 1 of Bob. Moreover, the knowledge bases may contain not
only predicates, but also other formulae. These formulae may increase the knowledge of
the agents. For instance, Alice knows loc(Bob, 1) implicitly. Alice can derive loc(Bob, 1)
by Modus Ponens, from post(Bob, 1) and ∀η.post(Bob, η) =⇒ loc(Bob, η).

III.2.2 Knowledge-based Logic

We use the logic KBL to reason about the knowledge and the permissions of agents
over social network models. The logic allows us to leverage all the expressive power of
first-order epistemic reasoning to formally express and verify privacy policies. As usual
in first-order logic, we start with a vocabulary consisting of a set of constant symbols,
variables, function symbols and predicate symbols, which are used to define terms as
follows:

Definition 6 (Terms). Let x be a variable and c a constant and {fi} for i ∈ I (where
I is a set of indexes) a family of functions with implicit arity. Then the terms are

1Since a user can have several locations we use an index to differentiate them, loc(Bob, 1) represents
location 1 of Bob.

48 Chapter III

inductively defined as:

t ::= c | x | fi(
#»
t)

where #»
t denotes a tuple of terms respecting the arity of fi.

We use terms to define predicates. For instance, friends(Alice,Bob) is a predicate
that can be used to express that Alice and Bob are friends. The syntax of the logic is
then defined as follows:

Definition 7 (Syntax). Given i, j ∈ Ag, the relation symbols an(i, j), cm(i, j), p(#»
t) ∈

A where m ∈ C and n ∈ Σ, and a nonempty set G ⊆ Ag, the syntax of the knowledge-
based logic KBL is inductively defined as:

φ ::= p(
#»
t) | cm(i, j) | an(i, j) | φ ∧ φ | ¬φ | ∀x.φ | Kiφ | DGφ| CGφ

The remaining epistemic modalities are defined as SGφ ≜
∨
i∈GKiφ and EGφ ≜∧

i∈GKiφ.

We choose to discriminate between predicates encoding permissions between agents,
i.e., an(i, j), predicates encoding connections between agents, i.e., cm(i, j), and other
types of predicates, e.g. p(#»

t), in order to stay as close as possible to the social network
models. FKBL will represent the set of all well-formed formulae of KBL according
to the category φ above. The epistemic modalities stand for: Kiφ, agent i knows φ;
EGφ, everyone in the group G knows φ; SGφ, someone in the group G knows φ; DGφ, φ
is distributed knowledge in the group G; CGφ, φ is common knowledge in the group G.
We use the following operators as syntactic sugar in the logic KBL: P ji an := an(i, j)

, agent i is permitted to execute action an to agent j; SP jGan :=
∨
i∈G an(i, j), at least

one agent in G is permitted to execute action a to agent j; GP jGan :=
∧
i∈G an(i, j), all

agents in G are permitted to execute action a to agent j. When we write “agent i is
permitted to execute action an to agent j”, it means that agent i allows j to perform
an action an which directly involves i, e.g. PAlice

Bob friendRequest would mean that Bob
is allowed to send a friend request to Alice. We define Ek+1

G as EGEkGφ, where E0
Gφ is

equal to φ. The logical operators → and ∨ are defined in terms of ∧ and ¬ as usual.
In what follows we define the satisfaction relation for KBL formulae, interpreted

over social network models.

Definition 8. Given a social network model SN = ⟨Ag,A,KB, π⟩, the agents i, j, u
∈ Ag, φ,ψ ∈ FKBL, a nonempty set of agents G ⊆ Ag, m ∈ C, n ∈ Σ, o ∈ D and k ∈ N,
the satisfaction relation ⊨ ⊆ SN ×KBL is defined as shown in Table III.1.

Formalising Privacy Policies in Social Networks 49

SN ⊨ p(#»
t) iff p(

#»
t) ∈ KBe

SN ⊨ cm(i, j) iff (i, j) ∈ Cm
SN ⊨ an(i, j) iff (i, j) ∈ An

SN ⊨ ¬φ iff SN ̸⊨ φ
SN ⊨ φ ∧ ψ iff SN ⊨ φ and SN ⊨ ψ
SN ⊨ ∀x.φ iff for all v ∈ Do, SN ⊨ φ[v/x]

SN ⊨ Kiφ iff φ ∈ Cl(KBi)
SN ⊨ CGφ iff SN ⊨ EkGφ for k = 1, 2, . . .
SN ⊨ DGφ iff φ ∈ Cl(

∪
i∈GKBi)

Table III.1: KBL satisfaction relation

Predicates are interpreted as relations over the respective domains in the model,
e.g., connections and permissions. Additionally, we introduce a special agent e, called
environment, that defines the truth of atomic formulae of the type p(#»

t). The envi-
ronment’s knowledge base (KBe) contains all predicates p(

#»
t) that are true in the real

world, but the other agents may not know about. Intuitively, the environment agent
can be seen as an oracle that knows all the true facts in the real world, for instance,
Alice ̸= Bob or Alice ̸∈ {Bob,Charlie}. For simplicity, sometimes we use predicates
to represent pieces of information. These predicates are always present in KBe. For
instance, in Example 1, we use the predicate loc(Bob, 1) to represent location 1 of Bob,
which allows us to write formulae such as KAliceloc(Bob, 1) to state that “Alice knows
location 1 of Bob”. As usual, φ[v/x] denotes the capture-free substitution in first-order
logic and we tacitly assume that each variable x is mapped to its own domain.

The intuition behind the semantic definition of the knowledge modality Ki is as
follows: a user i knows φ (denoted as Kiφ) iff either the user knows φ explicitly, i.e., φ
is in the knowledge base (KBi), or φ can be derived (using the axiomatisation S5) from
the existing formulae in the knowledge base (φ ∈ Cl(KBi)). This definition is better
illustrated by an example.

Example 2. Let SN be the SNM in Figure III.2. As we described in Example 1, Alice
knows post 1 of Bob, meaning that

SN ⊨ KAlicepost(Bob, 1)

holds, since post(Bob, 1) is explicitly in the knowledge base of Alice, i.e.

post(Bob, 1) ∈ KBAlice. (III.3)

50 Chapter III

We also mentioned that Alice implicitly knows location 1 of Bob, which means that

SN ⊨ KAliceloc(Bob, 1) (III.4)

should hold. According to the semantics we have provided for Ki, the previous statement
is true iff loc(Bob, 1) ∈ Cl(KBAlice). Figure III.2 shows that, in SN, the following
formula is in KBAlice

∀η.post(Bob, η) =⇒ loc(Bob, η) (III.5)

where η ∈ N, hence
post(Bob, 1) =⇒ loc(Bob, 1) (III.6)

is also in KBAlice. From (III.3) and (III.6) we know that the knowledge base of Alice
contains at least the following elements,

KBAlice = {post(Bob, 1), post(Bob, 1) =⇒ loc(Bob, 1), . . .}.

Finally, by the definition of Cl (Definition 9), modus ponens can by applied for (III.6)
and (III.3) to derive loc(Bob, 1), i.e. loc(Bob, 1) ∈ Cl(KBAlice) and therefore (III.4)
holds.

The interpretation of distributed knowledge, DG, is similar to the one for Ki, but it
considers the knowledge of all agents in G instead of accounting only for the knowledge
of agent i.

We can use the logic KBL to reason about combinations of what the agents know
and what actions they are allowed to perform in an SNM.

Example 3. Consider again the SNM SN in Figure III.2. We can check whether the
statement

SN ⊨ E{Bob,Charlie}loc(Bob, 1) =⇒ PAlice
CharliefriendRequest

holds for i ∈ {Alice,Bob,Charlie}. As in Example 1, Bob and Charlie both know location
1 of Bob, therefore it holds that loc(Bob, 1) ∈ Cl(KBBob) and loc(Bob, 1) ∈ Cl(KBCharlie).
Hence

SN ⊨ KBobloc(Bob, 1) ∧KCharlieloc(Bob, 1),

it implies that
SN ⊨ E{Bob,Charlie}loc(Bob, 1).

Also (Charlie,Alice) ∈ AfriendRequest, meaning that Charlie is permitted to send a friend

Formalising Privacy Policies in Social Networks 51

request to Alice, therefore it holds

SN ⊨ PAlice
CharliefriendRequest.

Finally we can conclude that our original implication holds for SN.

Not all SNSs have the same knowledge and permission properties. Different proper-
ties hold in different SNSs. As we have seen, using the satisfaction relation ⊨, we can
determine whether a KBL formula holds in an SNM. These knowledge and permission
properties can be expressed in KBL, and consequently, we can check whether they hold
in a specific SNM as we show in the following example.

Example 4. In Facebook, as soon as a user has access to a post, she can see all the
users who liked the post. This means that when any member clicks the “like” button,
all the users with access to the post will know about it. Let o be some agent and η

some post, the predicate post(o, η) representing the post η by agent o and the predicate
like(i, o, η) representing the fact that agent i liked the post η by o, we can check whether
the property holds in a given SN ∈ SN using the satisfaction relation:

SN ⊨ ∀j.∀o.∀i.∀η.Kjpost(o, η) ∧Kilike(i, o, η) =⇒ Kj like(i, o, η)

Properties of the framework. The logic KBL leverages the deductive engine by
applying the axioms and derivation rules from the axiomatisation S5 to infer new knowl-
edge. We remark that the same axiomatisation can not be used for KBL, since the pred-
icates, e.g. connection and permission, are interpreted differently depending on whether
or not they occur inside a knowledge modality. For instance, satisfaction of the connec-
tion predicate friendship(Alice,Bob) will only depend on the condition (Alice,Bob) ∈
AFriendship. Nonetheless, checking the formula KAlicefriendship(Alice,Bob) requires
that friendship(Alice,Bob) ∈ Cl(KBAlice). This is in line with the fact that agents
may know facts that are not true in the real world. As a result, this unconventional
interpretation of predicates prevents us from using axiomatisations defined for classical
epistemic logic. However, when checking if a formula is in the knowledge base of an
agent, all predicates are treated equally, even when they are connection or permission
predicates. Hence the individual knowledge of each agent in SNMs can be modelled
using a classical Kripke model, meaning that it can be seen as a set of formulae in Ln.
Because of this, we assume that they can infer new knowledge using the axiomatisation
S5, which is sound and complete for classical epistemic logics [29].

The example above shows that we are concern with agents’ belief instead of knowl-

52 Chapter III

edge. In fact, we can use the KD45 axiomatisation for belief [29] to check properties of
the logic KBL [72]. Intuitively, we can think of SNMs as models that combine two logics.
On the one hand, we use KBL to reason about the global knowledge and permission of
the SNS. On the other hand, agents can have their local knowledge represented using
Ln and use S5 to infer new knowledge. The KBL logic is closely related to traditional
Kripke models as discussed in Section VI.4.

Finally, the logic relies on the assumption that the knowledge bases of the agents
are always consistent in the sense that falsehood is never derived. In practice this
assumption can be relaxed either by checking that false is never derived whenever adding
new facts to a knowledge base, or by extending predicates with indexes/timestamps the
discriminate between predicates added at different stages to a knowledge base.

III.2.3 The Privacy Policy Language
One of the objectives of FPPF is to provide a way to express complex and fine-grained
privacy policies. We introduce PPL as a formal language for writing privacy policies
based on KBL.

Definition 9. Given the agents i, j ∈ Ag, the relation symbols an(i, j), cm(i, j), p(#»
t) ∈

A where m ∈ C and n ∈ Σ, a nonempty set G ⊆ Ag and φ ∈ FKBL, the syntax of the
privacy policy language PPL is inductively defined as follows:

δ ::= δ ∧ δ | ∀x.δ | Jφ =⇒ ¬αKi | J¬αKi
α ::= α ∧ α | ψ | γ′ | ∀x.α
γ′ ::= Kiγ | EGγ | SGγ | DGγ| CGγ
γ ::= γ ∧ γ | ¬γ | p(#»

t) | γ′ | ψ | ∀x.γ
ψ ::= cm(i, j) | an(i, j)

In PPL privacy policies are written in a negative way in order to specify who is not
allowed to know a fact or who is not permitted to perform an action. Note that in δ, α is
always preceded by negation. The syntactic category α represents the restrictions that
must be enforced in the social network; the set of well-formed formulae of this category
is denoted as FR

PPL. The category γ′ corresponds to a restricted version of FKBL where
the first element is a positive knowledge modality. This forces policies to be written in a
negative way, since no double negation is possible in the first knowledge modality. Also,
we always refer to the agents’ knowledge, since γ′ starts with a knowledge modality.
The category ψ gives a special treatment of predicates for actions and connections to

Formalising Privacy Policies in Social Networks 53

express restrictions over the connections and the actions that agents are involved in. In
δ we wrap privacy policies using J Ki, where i ∈ Ag, to denote the owner of the privacy
policy. We write FPPL for the set of well-formed PPL formulae given by δ. As a result,
there are two main types of privacy policies that users can write:

• Direct restrictions - J¬αKi These are restrictions which allow users to explic-
itly specify the audience which has no access to some piece of information or
who is permitted to execute an action. For instance, in PPL agent i can writeJ¬S{m,n,o}p(

#»
t)Ki, meaning that none of the agents m,n, o ∈ Ag can know p(

#»
t).

• Conditional restrictions - Jφ =⇒ ¬αKi A restriction α is enforced depending on
some knowledge or permission state (see Example 5).

Example 5. Let us consider the following policy:

∀j.J¬P ij joinevent(i) =⇒ ¬Kjevent(i, descp)Ki (III.7)

The intuitive meaning of this policy is that if a user i ∈ Ag creates an event
event(i, descp) (where descp is the description of the event) and she gives permission to
join it (the action of joining the event is represented by joinevent(i)) to a certain group of
people, then the event cannot be accessed by people other than the ones who are allowed
to join it. Similarly, a user can choose to limit the event’s audience to her friends only.
This can be expressed in PPL as

J¬SAg\friends(i)event(i, descp)Ki (III.8)

Unlike (III.7), this policy is enforced in most SNSs. However (III.8) is much more
coarse-grained than (III.7) and, as a result, it will not allow some users to access the
event if they are able to join it. Therefore, (III.8) unnecessarily reduces the audience of
the event.

We now give an example of a privacy policy which uses the distributed knowledge
modality.

Example 6. The distributed knowledge operator DG makes possible to protect users’
against intricate leaks of information in groups of agents. Consider the social network
model presented in Figure III.2, where Bob knows the day and the month of Alice’s
birthday, denoted by bDay(Alice) and bMonth(Alice), respectively, and he can also infer
the age of a user whenever he knows the user’s full date of birth, i.e.,

∀x.bDay(x) ∧ bMonth(x) ∧ bYear(x) =⇒ age(x).

54 Chapter III

SN ⊨C δ1 ∧ δ2 iff SN ⊨C δ1 ∧ SN ⊨C δ2
SN ⊨C ∀x.δ iff for all v ∈ Do, SN ⊨C δ[v/x]
SN ⊨C J¬αKi iff SN ⊨ ¬α
SN ⊨C Jφ =⇒ ¬αKi iff SN ⊨ φ then SN ⊨C J¬αKi

Table III.2: PPL conformance relation

Moreover, Charlie knows the year of Alice’s birth, represented by the predicate bYear(Alice).
Therefore, if Bob and Charlie combine their knowledge, Alice’s age will become dis-
tributed knowledge between the two. This is because the distributed knowledge operator
considers the combination of the knowledge of the group of agents and applies the de-
ductive engine to infer new knowledge. Fortunately, in PPL Alice can write the privacy
policy J¬D{Bob,Charlie}age(Alice)KAlice

to prevent this leak. Note that the social network model considered in this example
(Figure III.2) violates the policy.

The examples above show that the privacy policies we express in PPL give users a
fine-grained control over what information they share and with whom they share it. In
order to ensure that users’ privacy is not compromised, all their privacy policies must
be in conformance with the SNS.

Definition 10. Given a social network model SN = ⟨Ag,A,KB, π⟩, an agent i ∈ Ag,
φ ∈ FKBL, α ∈ FR

PPL, o ∈ D and δ, δ1, δ2 ∈ FPPL, the conformance relation ⊨C is
defined as shown in Table III.2.

Note that ⊨C is defined using the satisfaction relation ⊨. Due to this, privacy policies
can be seen as specific knowledge and permission conditions that must hold in the SNM.
Let us take as an example the policy (III.7) from Example 5 and an SNM SN

SN ⊨C ∀j.J¬P ij joinevent(i) =⇒ ¬Kjevent(i, descp)Ki.
By applying the semantics defined in Table III.2, checking whether SN is in conformance
with the policy is equivalent to checking that for all u ∈ Ag

SN ⊨C J¬P iujoinevent(i) =⇒ ¬Kuevent(i, descp)Ki
which is also equivalent to

If SN ⊨ ¬P iujoinevent(i) then SN ⊨ ¬Kuevent(i, descp)

Formalising Privacy Policies in Social Networks 55

As we can see in Table III.2, checking conformance of any formula in PPL boils down
to checking satisfaction of the corresponding formula in KBL.

III.2.4 Instantiation of the framework
So far we have described a generic framework applicable to general SNSs. However,
each SNS has its own features. For example, Foursquare has the follower connection
and users can write tips related to places where they have been. In Google+ users
are grouped in circles and they share information depending on those circles. Moreover,
Google+ offers users the possibility of creating events that other users can join, whereas
this is not present in other SNSs like Foursquare, Twitter or Instagram.

Here we introduce the concept of FPPF instantiation, which will be used to model
the specific characteristics of an SNS.

Definition 11 (FPPF instantiation). An FPPF instantiation for an SNS S is a
tuple of the form

FPPFS = ⟨SNS ,KBL,⊨,PPL,⊨C⟩

where SNS = ⟨AgS ,AS ,KBS , πS⟩ and

• AgS is the set of agents in the SNS;

• The structure AS contains a set of predicates PS , a set of connection relations
CS , a set of permission relations AS , and a family of auxiliary functions {fi}i∈I ;

• The knowledge base contains a set of properties AS of the SNS, written in
KBL (these properties represent assumptions for the instantiated SNS);

• πS returns the set of privacy policies of an agent in S. We assume that the set of
privacy policies ΠS is consistent. We also assume that all privacy policies in ΠS

satisfy the admissibility condition RES .

The admissibility condition RES specifies the generic structure of privacy policies for
a particular instantiation (see Definition 12 for an example). Formally, RES is a predi-
cate over the elements of FPPFS defining the well-formed policies for the instantiation.
We write π′ ∈ RES if π′ satisfies RES . Independently of the admissibility condition, we
assume that all privacy policies are consistent. For simplicity, when no confusion arises,
we will not specify the subindex S in the instantiation. Also, as mentioned before, the
deductive engine of the knowledge base, KB, is extended with the assumptions AS in
the instantiation.

56 Chapter III

III.2.5 Instantiation of Twitter
Twitter is an SNS in which the interaction among users is carried out by means of
posting (or tweeting) 140 characters messages called tweets. Apart from text, tweets
can also include pictures and locations. If users want to re-share a tweet, they can use
the retweet functionality which shares an already published tweet from another user.
Users can also mark tweets as favourite, which is similar to star emails, i.e., it marks
the tweet with a star. It has recently become quite trendy to use the favourite feature as
a way to express that you like the content of the tweet. The main relationship between
users is called follower. It is a unidirectional relation between users. When users follow
another user, they get updates with all the tweets of the user they follow.

In what follows we formally present the Twitter instantiation, denoted by FPPFTwitter.

Predicates. Given o, u ∈ Ag and µ, η ∈ N, the set of predicates PTwitter ∈ FPPFTwitter
is:

• tweet(o, η) - Tweet η tweeted by o.

• mention(u, o, η) - Mention of u in tweet(o, η).

• favourite(u, o, η) - u marked tweet(o, η) as favourite.

• retweet(u, o, η) - Retweet of tweet(o, η) by u.

• location(o, η) - Location of tweet(o, η)

• picture(o, η, µ) - A picture included in tweet(o, η).

• username(u), email(u), phone(u) - Username, email address and phone number of
user u.

The constants η and µ are indexes for tweets and pictures of a user, respectively.

Connections. The set of connections include the follower and the block relationships,
CTwitter = {CFollower, CBlock}.

Actions. The actions are defined as:

ATwitter = {AaccessProf, AaccessProfRec, AsendAd}

where accessProf is the action of a user accessing other user’s profile; the action
accessProfRec represents a user’s profile can be accessed as a recommendation, for

Formalising Privacy Policies in Social Networks 57

example when a user installs the Twitter mobile app, the SNS recommends other users
which may be in the user’s contact list; and sendAd is the action of an advertisement
company sending advertisements to a user.

Constraints over privacy policies (Admissibility condition). In FPPFTwitter
we do not define constraints for the privacy policies per se. Instead we describe a
schema composed by the generic structure of the privacy policies that users in Twitter
can write. The schema is based on the set of Twitter privacy policies presented in [71],
which was shown to express all the policies that Twitter offers in its privacy settings
section nowadays.

Definition 12. Given u ∈ Ag and η ∈ N; the generic structure of the privacy policies
for Twitter is as follows:
P1(u) = J¬SAg\followers(u)\{u} tweet(u, η)Ku - Only u’s followers can access her tweets.
P2(u) = J¬SAg\followers(u)\{u}retweet(u, tu, η)Ku - Only u’s followers can access her

retweets.
P3(u) = J¬SAg\{u} location(u, η)Ku - No tweet by u contains her location.
P4(u) = ∀i.J¬Ki (email(u) ∨ phone(u)) =⇒ ¬Pui accessProfRecKu - No user i can

receive a recommendation to follow u, unless i knows u’s email or phone number.
P5(u) = J¬SPuAdvertisers sendAdKu - No advertisement companies can send ads to user

u.

In addition, users in Twitter are not allowed to have more than one instance of each
type of privacy policy at the same time. Definition 12 formally describes the structure
of the privacy policies accepted by the admissibility condition RETwitter.

Auxiliary functions. The set of auxiliary functions consists of:

• followers : AgTwitter → 2AgTwitter - This function returns the followers of a given
user, i.e. for u ∈ AgTwitter, followers(u) = { i | (i, u) ∈ CFollower}.

• state : AgTwitter → St - This function returns the state of a user’s account, which
can be public or private. For u ∈ AgTwitter, it returns private if the policies
P1, P2 ∈ πu and public otherwise.

• inclocation : AgTwitter → Bool - This function returns the user’s preference for
revealing the location with the tweet. For u ∈ AgTwitter it returns false if the
policy P3 ∈ πu, and true otherwise.

• beingReco : AgTwitter → Bool - This function returns the user’s preference about
being recommended to be followed by other users who have access her email or

58 Chapter III

phone number. For u ∈ AgTwitter it returns false if the policy P4 ∈ πu, and true
otherwise.

• getTweetInfo : AgTwitter × N → 2PTwitter - This function extracts information
from a given tweet, for instance, the location (location(o, η)), the users mentioned
in the tweet (mention(u1, o, η) . . . mention(um, o, η)), and the attached pictures
(picture(o, η, 1) . . . picture(o, η, j)), where m, j ∈ N are indexes. This information
is returned as a set of predicates.

• audience : PTwitter → 2AgTwitter - This function returns the audience of some piece
of information, i.e. the agents who know that information. Given p(#»

t) ∈ PTwitter,
audience(p(#»

t)) = { i | SN ⊨ Kip(
#»
t)}

• info : AgTwitter → 2PTwitter - This function returns all the information of a given
agent. Given an agent u ∈ AgTwitter, info(u) = {p(u, #»

t)|p(u, #»
t) ∈ KBu}.

Properties of FPPFTwitter. The role of the properties is twofold. Firstly, they are
used to encode some of the properties of the specific SNS and, secondly, some of these
assumptions are added to the knowledge base KB of all the agents.

Note that, for the following set of properties, we write that an agent has access to
a predicate p(#»

t) if she knows it, i.e., Kip(
#»
t). The intuition behind this choice is that

if the agent “learnt” the predicate, it is because she had access to it. ATwitter consists
of the following properties:

• Property 1. If a user has access to a tweet, tweet(o, η), then she can access all the
information of that tweet. For all p(#»

t) ∈ getTweetInfo(o, η),

∀i.∀o.∀η.(Kitweet(o, η) =⇒ Kip(
#»
t))

• Property 2. If a user has access to another user’s tweet, tweet(o, η), she can also
access that user’s profile.

∀i.∀o.∀η.(Kitweet(o, η) =⇒ P oi accessProf)

This property models the fact that there is a link to the profile of the user who
tweeted the tweet.

• Property 3. If a user has access to another user’s retweet, retweet(u, o, η), she can
also access that user’s profile and the owner of the tweet’s profile.

∀i.∀u.∀o.∀η.(Kiretweet(u, o, η) =⇒ Pui accessProf ∧ P oi accessProf)

Formalising Privacy Policies in Social Networks 59

• Property 4. If a user has access to another user’s favourite, favourite(u, o, η), she
can also access that user’s profile and the owner of the tweet’s profile.

∀i.∀u.∀o.∀η.(Kifavourite(u, o, η) =⇒ Pui accessProf ∧ P oi accessProf)

Properties 2-4 may not seem very intuitive. They come from a design choice we
make when implementing the behaviour of the SNS. In Twitter, when someone accesses
another user’s tweet, retweet or favourite, the user has the possibility of accessing the
profiles of the owner of the tweet, retweet and favourite, respectively. The user only
gets a chance to access the profile, because if that profile is not public only followers can
access it, and this will be checked when the user is actually trying to access the profile.
In our instantiation, we chose to model this using the permission operator and this is
the reason why the mentioned properties give the permission to access the profile. A
different approach could have been creating an attribute called profile(u), which as soon
as it is learnt by a user, it permits them to access u’s profile. Moreover, the designer of
the SNS can define as many properties as she considers necessary for the SNS, beyond
the four properties introduced here.

III.3 Privacy Policies in Dynamic SNS
Social network users usually execute events. For example, they can post messages on a
timeline, they can like a given post, share pictures, and so forth. Different events may
change the knowledge, the permissions, or the connections between agents in the SNS.
In this section, we formally incorporate the events that can be executed in the SNS
and give the operational semantics rules for modelling the events’ behaviour in FPPF .
These rules formally describe how SNMs change when a particular event occurs. This
leads to having sets of SNMs, which represent the state of the SNS at a given moment
in time. We also include a labelled transition system in FPPF , which contains all the
information about the evolution of the SNS. As in the previous section, we describe
how these elements are instantiated for particular social networks and we conclude by
extending the Twitter instantiation provided in Section III.2.

III.3.1 Labelled Transition System
Labelled Transition Systems (LTSs) have extensively been used in computer science
to describe the behaviour of systems. In short, they are directed graphs where nodes
represent states and edges the transitions between states. The edges are labelled with
the name of the event which originates the transition between state.

60 Chapter III

In order to represent the behaviour induced by the events of the SNS, we define an
LTS, and use it to keep track of the epistemic and deontic states as the SNS evolves.
Nodes in the LTS represent configurations, which are SNMs. The set of all configurations
in the LTS is a subset of all possible SNMs, SN , since the LTS only contains the SNMs
resulting from the execution of an event. Transitions in the LTS represent the evolution
from a configuration to another, as a result of the execution of an event.

Definition 13. An SNS Labelled Transition System (SNSLTS) is a tuple ⟨Conf, EVT,
→, c0⟩, where

• Conf is a set of social network models, Conf ⊆ SN ;

• EVT is the set of all possible events which can be executed in the SNS;

• → ⊆ Conf× 2EVT × Conf is a transition relation;

• c0 ∈ Conf is the initial configuration of the social network.

Given a set of events E ⊆ EVT and the configurations c0, c1 ∈ Conf, we write
c0

E−→ c1 to denote that the SNS evolves from c0 to c1 by the execution (in parallel) of the
events in E. If E only contains one event, the transition represents a regular sequential
execution. Note that the type of → allows for true parallelism in the execution of events.
However we do not study possible side effects of the interleavings in the execution of
parallel events, instead we will assume that the result of the execution in parallel is
independent of the interleaving, leaving this issue as future work. For all configurations
c it holds that c ∅−→ c.

Now we can formally define in FPPF dynamic SNSs as described by the Labelled
Transition System.

Definition 14 (Dynamic FPPF). The tuple ⟨LT SSN , KBL, ⊨, PPL, ⊨C⟩ is a dy-
namic privacy policy framework (denoted by FPPFD), where

• LT SSN is the set of all possible SNS labelled transition systems;

• KBL is a knowledge-based logic;

• ⊨ is a satisfaction relation defined for KBL;

• PPL is a formal language for writing privacy policies;

• ⊨C is a conformance relation defined for PPL.

Formalising Privacy Policies in Social Networks 61

{follow(Alice,Bob)}

{post(Bob, 1, Public),
 friendRequest(Charlie,Alice)}

p(Bob,1)

p(Bob,1)
fr(Charlie)

p(Bob,1)
sfr(Alice)

SN1

Alice

Charlie Bob

SN2

Alice

Charlie Bob

SN0

Alice

Charlie Bob

follow

friendRequest

Figure III.3: Example of SNS Labelled Transition System

Example 7. In Figure III.3 we give an example of an SNSLTS. This SNSLTS shows
a possible sequence of events that can be executed. The rectangles represent 3 configu-
rations SN0,SN1,SN2 ∈ Conf. Each configuration depicts the SNM at different points
in the execution. Since there are no events that involve the addition or removal of
any users, all configurations have the same set of agents Ag = {Alice,Bob,Charlie}.
SN0 is the initial configuration. In this configuration, Bob follows Charlie, which is
represented by a unidirectional arrow between them. The dashed arrow from Charlie to
Alice expresses that Charlie is able to send a friend request to Alice.

The transition from SN0 to SN1 represents that the SNS can evolve from the configu-
ration SN0 to SN1 by executing of the event follow(Alice,Bob), i.e. SN0

{follow(Alice,Bob)}−−−−−−−−−−−−→
SN1. This event creates a new relation between Alice and Bob, which is modelled with
a directed arrow between them in the resulting SNM, SN1. This transition comprises

62 Chapter III

only one event, which means that no other event was executed in parallel. In SNSLTSs,
transitions are labelled with sets of events representing the actions executed in parallel.
In SN1

{post(Bob,1,Public),friendRequest(Charlie,Alice)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN2 two events are executed in par-
allel. On one hand, Bob posts his first post publicly in the SNS, post(Bob, 1,Public). As
a consequence, all users in SN2 have learnt p(Bob, 1), which is a predicate representing
Bob’s post. Formally, p(Bob, 1) ∈ KBi for all i ∈ Ag. In parallel, Charlie sends a friend
request to Alice. Let us assume, for the sake of this example, that this is needed to check
whether a friend request can be sent. Charlie is allowed to perform this event since

SN1 ⊨ PAlice
CharliefriendRequest

holds. Finally, the result of executing this event is that, in SN2, Alice knows that Charlie
sent her the friend request, fr(Charlie) ∈ KBAlice; and Charlie knows that he has sent
the friend to Alice, sfr(Alice) ∈ KBCharlie.

Note that in the LTS of the previous example we can only observe the consequences
of executing the events, but it is not possible to formally describe their behaviour. In
the following sections we will introduce the dynamic instantiation of our framework and
the operational semantics rules that formally define the behaviour of each event.

III.3.2 Dynamic FPPFS

As in the static case, the dynamic instantiation of an SNS requires the specification
of each of the components of the FPPF tuple. In particular, different SNSs will
have different sets of events, EVT, which they can execute. Hence we can extend the
definition of FPPF as follows:

Definition 15. A dynamic FPPF instantiation, denoted as FPPFD
S , for a social

network service S is an FPPFS , in which the elements of the LT SSN are instantiated:

FPPFD
S = ⟨LT SS

SN ,KBL,⊨,PPL,⊨C⟩

where LT SS
SN = ⟨ConfS ,EVTS ,→S , c0⟩ and

• ConfS ⊆ SNS is the set of all social network models for FPPFD
S ;

• EVTS is the set of all possible events in FPPFD
S ;

• →S is the transition relation determined by the operational semantics rules for
EVTS ;

• c0 ∈ ConfS is the initial model of FPPFD
S .

Formalising Privacy Policies in Social Networks 63

III.3.3 Operational Semantics Rules for SNS

The dynamic behaviour of an SNS is described in terms of a small step operational
semantics. For every event in EVTS , there will be one or more operational semantics
rules which describe its behaviour. The generic form of the rules is as follows:

Q1 . . . Qn

SN e−→ SN′

The premises Q1 . . . Qn may be predicates, side conditions or any other auxiliary infor-
mation used to describe the rule. They are defined by leveraging all the elements of
FPPF and the instantiation FPPFS in which the rules are defined. The SNMs SN and
SN′ are tuples as defined in Definition 2, i.e., ⟨Ag,A,KB, π⟩. The only elements of A
involved in definition of operational semantics rules are connection predicates {Ci}i∈C ,
permission predicates {Ai}i∈Σ and the set of generic predicates P. Therefore, we will
write {{Ci}i∈C , {Ai}i∈Σ,P} to refer to A. For the sake of clarity, we will not explicitly
write the rest of the elements of A. Any element of the SNM tuple which is not involved
in the execution of the rule will be replaced with “_”. The operational semantics rules
are divided in 4 types, as reported in Table III.3. We use the superindex e whenever an
update of the SNM depends on event e. In what follows we first describe the intuition
for each type of rule and then we provide a detailed description of an epistemic rule.

Epistemic. These rules are used to specify events that change the knowledge and/or
the permissions of an SNM. As a result, the premises appearing in epistemic rules will
only update the elements KB and Ai of the social network model involved in those rules.
Agents’ knowledge increases monotonically, for this reason, KB will only grow after the
execution of an epistemic rule (see the first premise of the epistemic rule in Table III.3).
Unlike knowledge, permissions can be granted or denied, which makes it possible for
the pairs in the binary relations Ai to be added or removed.

Sometimes SNSs release information by making a message available to a group
of users, e.g. tweets on Twitter or posts on Facebook. In dynamic epistemic logic
this type of event is known as public announcement [7]. The result of performing a
public announcement is that the disclosed information becomes common knowledge to
the group of agents which are the audience of that announcement. We use common
knowledge to accurately model what is known for everyone in a group.

Topological. These rules only affect the topology of SNMs. The social topology
represents the elements of an SNM which come from the social graph. Therefore these

64 Chapter III

Epistemic
∀j ∈ Ag KB′

j = KBj ∪ Γej where Γej ⊆ FKBL
A′
i = (Ai \ PerToRmve) ∪NewPere where NewPere ∈ 2Ag×Ag and PerToRmve ∈ 2Ai

P1 . . . Pm ∈ P where m ∈ N
⟨_, {_, {Ai}i∈Σ,P},KB,_⟩ e−→ ⟨_, {_, {A′

i}i∈Σ,P},KB′,_⟩

Topological
Ag′ = (Ag \AgtToRmve) ∪NewAgte where NewAgte ∈ 2AU and AgtToRmve ∈ 2Ag

C ′
i = (Ci \ ConToRmve) ∪NewCone where NewCone ∈ 2Ag×Ag and ConToRmve ∈ 2Ci

P1 . . . Pm ∈ P where m ∈ N
⟨Ag, {{Ci}i∈C ,_,P},_,_⟩ e−→ ⟨Ag′, {{C ′

i}i∈C ,_,P},_,_⟩

Policy
∀j ∈ Ag π′

j = (πj \ PolToRmvej) ∪NewPolej where NewPolej ∈ 2πj and PolToRmvej ⊆ FPPL
P1 . . . Pm ∈ P where m ∈ N

⟨Ag, {_,_,P},_, π⟩ e−→ ⟨Ag, {_,_,P},_, π′⟩

Hybrid
∀j ∈ Ag KB′

j = KBj ∪ Γej where Γej ⊆ FKBL
A′
i = (Ai \ PerToRmve) ∪NewPere where NewPere ∈ 2Ag×Ag and PerToRmve ∈ 2Ai

Ag′ = (Ag \AgtToRmve) ∪NewAgte where NewAgte ∈ 2AU and AgtToRmve ∈ 2Ag

C ′
i = (Ci \ ConToRmve) ∪NewCone where NewCone ∈ 2Ag×Ag and ConToRmve ∈ 2Ci

∀j ∈ Ag π′
j = (πj \ PolToRmvej) ∪NewPolej where NewPolej ∈ 2πj and PolToRmvej ⊆ FPPL

P1 . . . Pm ∈ P where m ∈ N
⟨Ag, {{Ci}i∈C , {Ai}i∈Σ,P},KB, π⟩ e−→ ⟨Ag′, {{C ′

i}i∈C , {A′
i}i∈Σ,P},KB′, π′⟩

Table III.3: Generic structure of the operational semantics rules

rules update the sets Ag and Ci of an SNM. Using topological rules we can model the
addition or removal of users and the relationships among them.

Policy. Policy rules allow to express changes in the privacy policies of the agents.
Therefore the only element of the SNM that will be modified is π. As in the previous
case, π may be updated by adding or removing privacy policies.

Hybrid. As the name suggests, these rules can be used in case an event in the SNS
causes a mix of the previous types of rules to apply. Consequently, hybrid rules will
combine premises of the three types and possibly update the SNM.

In order to clarify the specific meaning of the rules in Table III.3, here we provide

Formalising Privacy Policies in Social Networks 65

a detailed explanation of the generic epistemic rule. The first premise in the rule,

∀j ∈ Ag. (KB′
j = KBj ∪ Γej) where Γej ⊆ FKBL

represents the update of the knowledge bases of the agents. KBj is the knowledge base
of agent j before the execution of the event e and KB′

j is the resulting knowledge base
after the execution of e. The new knowledge is given by Γej , which is defined to be a set
of formulae FKBL. Note that Γ is parametrised by the event e and the agent j, meaning
that not all agents will have the same update of knowledge. Let Ag = {Alice,Bob},
then for an event e1 that only updates Bob’s knowledge with the predicate p(#»

t) we
would have Γe1Alice = ∅ and Γe1Bob = {p(#»

t)}.

The second premise in the generic epistemic rule expresses the update of permission
in the SNM,

A′
i = (Ai \ PerToRmve) ∪NewPere

where NewPere ∈ 2Ag×Ag and PerToRmve ∈ 2Ai . Ai is the set of agents’ pairs repre-
senting the set of permissions of type i ∈ Σ2 before executing the event e, and after
its execution A′

i will contain the resulting pairs. PerToRmve represents the pairs to be
removed in the SNM, its type is 2Ai meaning that only existing pairs can be removed.
NewPere is the set with the new pairs of agents representing new permissions, since its
type is 2Ag×Ag permission between any two agents can be created. When the event e
only removes permission, then NewPere = ∅ (i.e. A′

i = (Ai \ PerToRmve) ∪ ∅), on the
other hand, if e only adds new permission PerToRmve = ∅. In general, any kind of
update can be expressed. The same applies for updates of agents and connections in
topological rules and policies in policy rules. The last premise

P1 . . . Pm ∈ P where m ∈ N

is used to express any other auxiliary predicate involving any element of FPPF required
for the execution of the rule.

In what follows we show how to make use of the operational semantics rules to model
the behaviour of a concrete SNS. Specifically, we will provide the set of rules for the
events defined in a dynamic instantiation of Twitter.

2Remember that in SNMs we use binary relations between agents to represent permission (see
Section III.2.1)

66 Chapter III

III.3.4 Dynamic Instantiation of Twitter
In this section we present the dynamic instantiation of Twitter, FPPFD

Twitter, by extend-
ing the instantiation FPPFTwitter introduced in Section III.2.4. The set EVTTwitter con-
tains all the relevant events for the privacy analysis of Twitter. Specifically, EVTTwitter
consists of the following elements:

• tweet - It is one the core events of Twitter. It is used to post some piece informa-
tion.

• retweet - It is used to share an already tweeted tweet.

• favourite - It allows users to classify tweets as favourite.

• accessProf - It represents the action of accessing a user’s profile.

• createProf - It is the first event a user executes for joining Twitter. The user is
required to provide a set of basic information which determines her profile.

• follow - Users can connect with other users by means of the follower relationship.

• acceptFollowReq - When a user’s profile is not public the follow event enables a
request to the user. In order for the connection to be established the request must
be accepted. This event represents the action of accepting the request.

• block, unblock - In Twitter a user can block other users and can revert this decision.

• showReco - Twitter shows a selection of recommended-to-follow users, when the
email or the phone number of the recommended user is known by the one to whom
the recommendation is shown.

• showAdv - This event models the action of a company sending an advertisement
to a concrete user.

• allowAdv, disallowAdv - A user can (dis)allow a company from sending advertise-
ment. These events model the activation and deactivation of this permission.

• changeStPriv, changeStPub - These events model the switching between ’Private’
or ’Public’ accounts.

• inclLoc, notInclLoc - These events represent whether the location is included or
not in the tweet, respectively.

Formalising Privacy Policies in Social Networks 67

Tweet - T1

Au = followers(u) ∪ {u} ∪ {v | mention(v, u, η) ∈ TweetInfo}
state(u) == ’Public’ inclocation(u) == true
∀φ ∈ TweetInfo,∀i ∈ Au KB′

i = KBi ∪ {CAuφ}

⟨_,_,KB,_⟩ tweet(u,TweetInfo)−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(T1.1)

Au = followers(u) ∪ {u}
state(u) == ’Private’ inclocation(u) == false location(u, η) ̸∈ TweetInfo

∀φ ∈ TweetInfo,∀i ∈ Au KB′
i = KBi ∪ {CAuφ}

⟨_,_,KB,_⟩ tweet(u,TweetInfo)−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(T1.2)

Au = followers(u) ∪ {u} ∪ {v | mention(v, tu, η) ∈ TweetInfo}
state(u) == ’Public’ inclocation(u) == false location(u, η) ̸∈ TweetInfo

∀φ ∈ TweetInfo,∀i ∈ Au KB′
i = KBi ∪ {CAuφ}

⟨_,_,KB,_⟩ tweet(u,TweetInfo)−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(T1.3)

Au = followers(u) ∪ {u} state(u) == ’Private’ inclocation(u) == true
∀φ ∈ TweetInfo,∀i ∈ Au KB′

i = KBi ∪ {CAuφ}

⟨_,_,KB,_⟩ tweet(u,TweetInfo)−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(T1.4)

Create Profile - T2

u ̸∈ Ag Ag′ = Ag ∪ {u} KB′
i = InitialInfo

∀j ∈ Advertisers A′
sendAd = AsendAd ∪ {(u, j)} A′

accessProf = AaccessProf ∪ {(u, u)}

⟨Ag, {_, {Ai}i∈Σ,_},KB,_⟩ createProf(u,InitialInfo)−−−−−−−−−−−−−−−−→ ⟨Ag′, {_, {A′
i}i∈Σ,_},KB′,_⟩

(T2.1)

Table III.4: Create and Tweet rules for FPPFD
Twitter

We instantiate the rules in Table III.3 for each of the events described above. As a
result, we obtain the operational semantics rules for the social network. In what follows
we describe the Twitter rules for the events createProf and tweet detailed in Table III.4.
For the full set of rules modelling Twitter semantics please refer to Appendix A.3-A.6.
Note that in the previous rules we use “=” for assignments and “==” for equality.

The event createProf describes how the social network model changes when a new
user joins the SNS, i.e., SN createProf(u,InitialInfo)−−−−−−−−−−−−−−−−→ SN′ for SN,SN′ ∈ SNTwitter, u ∈ Ag
and InitialInfo ⊆ FKBL (representing the initial set of information that users provide
in Twitter). Rule (T2.1) consists of one condition, which if satisfied, leads to four

68 Chapter III

consequences. The condition u ̸∈ Ag requires that the new user is not already registered,
i.e., her node does not exist in the SNM before executing the event. The remaining
premises represent the effects of executing the event. Firstly, Ag′ = Ag ∪ {u} (where
Ag′ ∈ SN′), specifies that the new user is added to the SNM. Secondly, KB′

i = InitialInfo,
represents that in the new SNM SN′, the user knows all the information she provided
when signing up. Moreover the user is able to access her own profile as represented
by A′

accessProf = AaccessProf ∪ {(u, u)}. Finally, ∀j ∈ Advertisers A′
sendAd = AsendAd ∪

{(u, j)}, models the set of advertisers, Advertisers ⊆ Ag, who can send advertisements
to the user.

In general, an event may give rise to more than one operational semantics rule. tweet
is an example of such an event (see Table III.4). It is composed by 4 rules, which deter-
mine its behaviour depending on certain conditions. These conditions consider whether
a user has protected her tweets and whether she allows her location to be included in her
tweets. Since the policies can be either activated or deactivated, this leads to four differ-
ent social network models after its execution. Suppose that SN tweet(u,TweetInfo)−−−−−−−−−−−−→ SN′

for SN,SN′ ∈ SNTwitter, u ∈ Ag and TweetInfo ∈ 2PTwitter (representing the information
disclosed in the tweet, i.e., location of the tweet, mentions, pictures, etc). In the first
line of all the rules for tweet we specify what will be the audience of the tweet. This
depends on the type of the account of the user who is tweeting. If the state of the
user’s account is ’Public’, then the tweet will be disclosed to her followers and to the
people mentioned in the tweet, followers(u) ∪ {u} ∪ {v|mention(v, u, η) ∈ TweetInfo}
(rules (T1.1) and (T1.3)). Otherwise, the audience is restricted to only her follow-
ers followers(u) ∪ {u} (rules (T1.2) and (T1.4)). If the tweet location is deactivated,
inclocation(u) == false, then the rules contain one extra condition which explicitly
requires that the location should not be part of the information disclosed in the tweet,
location(u, η) ̸∈ TweetInfo (rules (T1.2) and (T1.3)). As a result, all the formulae
describing the tweet information become common knowledge among the agents of the
audience, ∀φ ∈ TweetInfo,∀i ∈ Au K ′

i = Ki ∪ {CAuφ}.

The reader may wonder why the audience of a tweet is not all Twitter users when
the profile of the tweet’s owner is public. The reason is because we want to model the
exact behaviour of the SNS. In Twitter when a user (with a public profile) tweets a
message, this message is shown in her followers’ timeline. Additionally, since the profile
is public, any other user (who is not following her) can check all her tweets. This is
modelled with the event accessProf. The rule modelling the event’s behaviour consists
of 2 cases, which distinguish if the user has a public or a private profile. If the profile
is public any user which executes the events will get access to all the tweets. For the
formal definition of this rule see III.A.1.

Formalising Privacy Policies in Social Networks 69

III.4 Proving Privacy in Social Networks
The dynamic part of FPPF raises new questions about the privacy of the SNS. The
execution of an event can lead to a state of the social network in which some privacy
policies are violated. As a designer, one may want to be sure that all the events
implemented in the SNS preserve the set of privacy policies that users have defined. In
this section, we define the notion of privacy-preserving SNS, which, in short, expresses
that all privacy policies must be in conformance with the SNS at any point in the
execution. This concept allows us to formally analyse the privacy of SNSs modelled in
FPPF . As an example, we describe how to carry out a privacy analysis of Twitter and
Facebook.

III.4.1 Does an SNS preserve privacy?
In SNSs privacy policies can be violated because of the execution of many events. There-
fore, in order to make sure that all privacy policies will be preserved in the SNS, we
have to ensure that none of the events can violate any of the privacy policies. Since
in FPPFD we model the evolution of the SNS, we can formally prove whether the
execution of the events defined in an SNS will preserve a set of privacy policies. We
formalise this privacy condition as follows.

Definition 16. An SNS S is privacy-preserving iff given a dynamic instantiation
FPPFD

S of S, for any SN,SN′ ∈ SNS , e ∈ EVTS and π′ ∈ ΠS the following holds:

If SN ⊨C π′ and SN e−→ SN′ then SN′ ⊨C π′

In the following sections we show whether this property holds for different sets of
privacy policies in Twitter and Facebook.

III.4.2 Privacy in Twitter
Using the dynamic instantiation of Twitter that we defined in the previous section,
FPPFD

Twitter, we show that the described events in EVTTwitter and the proposed spec-
ification using the operational semantics rules are privacy-preserving (as defined in
Definition 16) with respect to the set of privacy policies of Twitter.

Theorem 1. Twitter is privacy-preserving.

Proof sketch: We check that the execution of none of the events in EVTTwitter can
violate any of the privacy policies in ΠTwitter by considering all possible combinations

70 Chapter III

of events and privacy policies (i.e. ensuring that Definition 16 holds). Here we only
show the case when tweet (see Table III.4) is executed and the privacy policy P1(u) =J¬SAg\followers(u)\{u} tweet(u, η)Ku is activated. We follow the same strategy for the
remaining cases (see III.A.2 for the full detailed proof).
1. Given
1.1. u ∈ Ag (owner of the privacy policy P1(u))
1.2. Predicates to be disclosed TweetInfo ⊆ 2P where tweet(u, η) ∈ TweetInfo
1.3. e = tweet(u,TweetInfo)
1.4. We want to prove:

If SN ⊨C P1(u) and SN e−→ SN′ then SN′ ⊨C P1(u)

2. By contradiction, let us assume
2.1. SN ⊨C P1(u) and SN e−→ SN′

2.2. SN′ ̸⊨C P1(u)

3. By 2.2.
3.1. SN′ ̸⊨C P1(u) [Definition ⊨C]
3.2. SN′ ⊨ ¬¬SAg\followers(u)\{u}tweet(u, η) [¬¬e]
3.3. SN′ ⊨ SAg\followers(u)\{u}tweet(u, η)

4. By 3.3. and the definition of ⊨ we have
4.1. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN′ ⊨ Kitweet(u, η)

5. By Definition of tweet, we have that
5.1. ∀p(#»

t) ∈ TweetInfo SN′ ⊨ Cfollowers(u)∪{u}p(
#»
t) [By 1.2.]

5.2. SN′ ⊨ Cfollowers(u)∪{u}tweet(u, η) [By ⊨]
5.3. SN′ ⊨ E0

followers(u)∪{u}tweet(u, η)∧
E1

followers(u)∪{u}tweet(u, η)∧
E2

followers(u)∪{u}tweet(u, η)∧
E3

followers(u)∪{u}tweet(u, η) ∧ . . . [By ⊨]
5.4. SN′ ⊨ E1

followers(u)∪{u}tweet(u, η) [By ⊨]
5.5. ∀j ∈ followers(u) ∪ {u} SN′ ⊨ Kjtweet(u, η)

6. By 2.1. we have
6.1. SN ⊨C P1(u) [By ⊨C]
6.2. SN ⊨ ¬SAg\followers(u)\{u}tweet(u, η) [By Definition SG]
6.3. SN ⊨ ¬(

∨
i∈Ag\followers(u)\{u}Kitweet(u, η)) [Morgan]

Formalising Privacy Policies in Social Networks 71

6.4. SN ⊨
∧
i∈Ag\followers(u)\{u} ¬Kitweet(u, η)

7. By 6.4. and 5.5. we have
7.1. SN′ ⊨C P1(u)

8. By 2.2. and 7.1. we derive a contradiction.

The proof of Theorem 1 is carried out over the instantiation we constructed from
the observable behaviour of Twitter. Having access to the source code would make it
possible to define a more accurate instantiation of Twitter. Nevertheless it formally
guarantees that an implementation which precisely behaves as described by the opera-
tional semantics rules will preserve all privacy policies defined for Twitter.

As we mentioned in Section VII.1, developers add new functionalities every day.
Sometimes new privacy policies are added as well. Making sure that all privacy policies
are effectively enforced in such a dynamic environment is a very difficult task.

Suppose Twitter developers decide to offer the following new privacy policy to their
users:“It is not permitted that I am mentioned in a tweet which contains a location”.
This privacy policy can be expressed in PPL as follows:

P6(u) = ∀i.∀o.∀η.J¬(Kilocation(o, η) ∧Kimention(u, o, η))Ku.
Here we use FPPFD

Twitter to formally show that this privacy policy would not be en-
forced under the current operational semantics.

Lemma 1. Twitter is not privacy-preserving if P6(u) ∈ RETwitter where u ∈ AgTwitter.

Proof Sketch: Assume a user u ∈ Ag who has never been mentioned and has one instance
of P6(u) in her set of policies, and another user o ∈ Ag who executes the event

e = tweet(o, {tweet(o, η),mention(u, o, η), location(o, η)}).

Let us assume that SN e−→ SN′. From the assumptions we know that SN ⊨C P6(u), but
according to the operational semantics of tweet, all users in the audience of the tweet
will learn mention(u, o, η) and location(o, η) and therefore SN′ ̸⊨C P6(u). See III.A.2
for the detailed proof.

Lemma 1 is an expected result. Twitter was not developed with P6 in mind. Yet
the proof directly points to the event violating it. It also provides useful information of
how the behaviour of Twitter should be modified to support P6.

72 Chapter III

III.4.3 What about Facebook?
Together with Twitter, Facebook is one of the giants of social media. Facebook connects
millions of users who share information through events similar to the ones presented for
Twitter. In this section, we use Facebook as target SNS to show yet another example
of how FPPF can be used to analyse the privacy implications of adding new privacy
policies.

In Facebook, when someone tags a user in a picture only the owner of the picture
is required to confirm the tag. No confirmation from the tagged user is required. The
only control the tagged user has over the tag is to hide the picture from her timeline
or remove it after the tagging has been carried out. We model this behaviour in a
reduced instantiation of Facebook, denoted as FPPFFB-Tag, which exclusively contains
the required elements to model the tagging process.

Given o, tge, tgr ∈ AgFB-Tag and η ∈ N, the set of predicates, PFB-Tag, is composed
by:

• picture(o, η) - Picture η published by user o.

• tagRequest(tgr, tge, o, η) - Tag request from the tagger (tgr) of the tagged user,
taggee (tge), in picture picture(o, η).

• tag(tge, tgr, o, η) - Tag created by the tagger (tgr) of the tagged user, taggee (tge),
in picture picture(o, η).

The connections set only contains the friendship relationship, CFB-Tag = {CFriendship}.
The action removeTagtag(tge,tgr,accepter,η) is the only one included in the set AFB-Tag.
This action defines which users have permission to remove the tag tag(tge, tgr, accepter, η).
Regarding the auxiliary functions we only include:

• audience : PFB-Tag → 2AgFB-Tag - As in Twitter, the audience function returns the
audience of some piece of information. Given p(#»

t) ∈ PFB-Tag, audience(p(
#»
t)) =

{ i | SN ⊨ Kip(
#»
t)}.

• friends : AgFB-Tag → 2AgFB-Tag - This function returns all the friends of a given
user. Given u ∈ AgFB-Tag, friends(u) = {i|(u, i) ∈ CFriendship}.

The previous elements constitute the static part of our (reduced) instantiation
of Facebook, FPPFFB-Tag. In order to model the behaviour of the tagging event,
we extend FPPFFB-Tag with the operational semantics rules for the events tag and
acceptTagRequest—both included in EVTFB-Tag—as specified in Table III.5 thus com-
pleting the definition of FPPFD

FB-Tag. The intuition behind the operational semantics
rules is as follows.

Formalising Privacy Policies in Social Networks 73

Tag - FR1

picture(o, η) ∈ KB(tgr) KB′(o) = KB(o) ∪ {C{o,tgr}tagRequest(tgr, tge, o, η)}
KB′(tgr) = KB(tgr) ∪ {C{o,tgr}tagRequest(tgr, tge, o, η)}

SN tag(tgr,tge,picture(o,η))−−−−−−−−−−−−−−−→ SN′
(FR1.1)

Accept tag request - FR2

Au = audience(picture(o, η)) ∪ friends(tge)
a = removeTagtag(tge,tgr,o,η) acptr == o

tagRequest(tge, tgr, o, η) ∈ KB(acptr)
A′
a = Aa ∪ {(o, o), (o, tge)} ∀i ∈ Au KB′(i) = KB(i) ∪ {CAutag(tge, tgr, o, η)}

SN acceptTagRequest(acptr,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN′
(FR2.1)

Table III.5: Tagging - Operational Semantics of Facebook

The event tag(tgr, tge, picture(o, η)) represents what happens when a (tagger), tgr,
tags another user (taggee), tge, in a picture picture(o, η). The tagger tgr must have
access to the picture. We represent this by imposing the condition picture(o, η) ∈
KB(tgr) in FR1.1. If the condition is satisfied, a tag request, informing that tgr wants
to tag tge in picture(o, η), is sent to the owner of the picture and it becomes common
knowledge for both of them, so ∀i ∈ {o, tgr} we have that

KB′(i) = KB(i) ∪ {C{o,tgr}tagRequest(tgr, tge, o, η)}

Note that the approval from the tagged user is not required.
The event acceptTagRequest(acptr tge, tgr, picture(o, η)) describes the result of

accepting a tag request. The tag request must have been sent beforehand. The owner
of the picture is the only user able to accept the tag, i.e., acptr == o, therefore it is
required to check that the user accepting the tag has access to the tag request,

tagRequest(tge, tgr, o, η) ∈ KB(acptr).

The owner of the picture and the taggee will be permitted to remove the tag, which is
specified as follows, given a = removeTagtag(tge,tgr,o,η)

A′
a = Aa ∪ {(o, o), (o, tge)}.

74 Chapter III

Also the tag is disclosed to the users part of the audience of the picture, thus becoming
common knowledge among them. ∀i ∈ audience(picture(o, η))

KB′(i) = KB(i) ∪ {CAutag(tge, tgr, o, η)}.

Suppose now that Facebook developers decide to offer to their users a better control
over their tags by adding the following privacy policy:

“I can only be tagged in a picture if I have approved it”.

We denote this privacy policy as FP1(u) where u ∈ AgFB-Tag and it is expressed in
PPL as follows:

∀o.∀t.∀η.J¬KutagRequest(t, u, o, η) =⇒ ¬SAgtag(u, t, o, η)Ku
meaning that for all pictures posted by a user o (picture(o, η) where η ∈ N), if the user
u (the one who is going to be tagged) did not receive the tag request, then the tagging
will not be carried out. By forcing u to be the one receiving the tag request, we ensure
that it is u the one approving the tag.

As in Twitter, the following holds:

Lemma 2. Facebook is not privacy-preserving if FP1(u) ∈ REFB-Tag where u ∈
AgFB-Tag.

Proof sketch: Let tge ∈ Ag be a user who has never been tagged and let tgr ∈ Ag be
a user who has executed the event tag(tgr, tge, o, η) in order to tag tge in picture(o, η)
where o ∈ Ag and η ∈ N. The owner of picture(o, η) is o. Assume a social network model,
SN, where it holds that tagRequest(tge, tgr, o, η) ∈ KB(o). In order for FPPFD

FB-Tag

to preserve privacy it must hold that if SN acceptTagRequest(o,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN′ and
SN ⊨C FP1(tge), then SN′ ⊨C FP1(tge) where SN,SN′ ∈ SNFB-Tag.

Since tge was not tagged before the execution of FR2 we know that SN ⊨C FP1(tge).
Also since tagRequest(tge, tgr, o, η) ∈ KB(o) and acptr == o we know that FR2 can
be executed. By the definition of FR2, we know that SN′ ⊨ EAutag(tge, o, o, η), hence
SN′ ̸⊨C FP1(tge), which contradicts our claim SN′ ⊨C FP1(tge) and therefore the
instantiation FPPFD

FB-Tag is not privacy-preserving. See III.A.2 for the detailed proof.

In short, the proof shows that the policy is not enforced because the owner of the
picture can accept tags (FR2.1) of any user without their approval in any of her pictures.
In this instantiation, since there are only two operational semantics rules, it is easy to
discuss a possible modification in the rules so that FP1 is supported.

Formalising Privacy Policies in Social Networks 75

Tag - FR1

FP1(tge) ̸∈ πtge
picture(o, η) ∈ KB(tgr) KB′(o) = KB(o) ∪ {C{o,tgr}tagRequest(tgr, tge, o, η)}

KB′(tgr) = KB(tgr) ∪ {C{o,tgr}tagRequest(tgr, tge, o, η)}

SN tag(tgr,tge,picture(o,η))−−−−−−−−−−−−−−−→ SN′
(FR1.1)

FP1(tge) ∈ πtgepicture(o, η) ∈ KB(tgr)
KB′(tge) = KB(tge) ∪ {C{tge,tgr}tagRequest(tgr, tge, o, η)}

KB′(tgr) = KB(tgr) ∪ {C{tge,tgr}tagRequest(tgr, tge, o, η)}

SN tag(tgr,tge,picture(o,η))−−−−−−−−−−−−−−−→ SN′
(FR1.2)

Accept tag request - FR2

Au = audience(picture(o, η)) ∪ friends(tge) FP1(tge) ̸∈ πtge

a = removeTagtag(tge,tgr,o,η) acptr == o tagRequest(tge, tgr, o, η) ∈ KB(acptr)
A′
a = Aa ∪ {(o, o), (o, tge)} ∀i ∈ Au KB′(i) = KB(i) ∪ {CAutag(tge, tgr, o, η)}

SN acceptTagRequest(acptr,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN′
(FR2.1)

Au = audience(picture(o, η)) ∪ friends(tge)
FP1(tge) ∈ πtge a = removeTagtag(tge,tgr,o,η)

acptr == tge tagRequest(tge, tgr, o, η) ∈ KB(acptr)
A′
a = Aa ∪ {(o, o), (o, tge)} ∀i ∈ Au KB′(i) = KB(i) ∪ {CAutag(tge, tgr, o, η)}

SN acceptTagRequest(acptr,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN′
(FR2.2)

Table III.6: New Tagging rules supporting FP1

First of all, FR2.1 must guarantee that the taggee is accepting the tag if the policy
is activated. In order to preserve this condition, we would need to replace acptr == o

with acptr == tge, which forces the taggee to be the one accepting the tag. Finally,
FR1.1 must be slightly modified, since now the tag request will be sent to the taggee
instead of the owner of the picture. Therefore,

KB′(o) = KB(o) ∪ {C{o,tgr}tagRequest(tgr, tge, o, η)}

is replaced with

KB′(tge) = KB(tge) ∪ {C{tge,tgr}tagRequest(tgr, tge, o, η)}.

The resulting operational semantics rules are presented in table III.6.

76 Chapter III

Finally, including the new two rules in FPPFD
FB-Tag and assuming that the only

privacy policy in the instantiation is FP1, the following lemma holds:

Lemma 3. Facebook is privacy-preserving.

Proof sketch: We consider all possible rules that can be executed and show that
none of them will violate FP1, which is the only policy available in the instantiation
FPPFD

FB-Tag. The only rule that can violate FP1 is FR2 (specifically the case FR2.2).
Due to the similarity to the proof for Theorem 1 we omit the details here, but we follow
the same strategy, i.e. we show by contradiction that FP1 cannot be violated. We refer
the reader to III.A.2 for the complete proof.

III.5 Discussion and Related Work
In this section we describe applications of epistemic logic in security and other ap-
proaches to modelling SNSs. We also discuss the formalism developed by Fong et al. which
describes the access control mechanisms present in most SNSs nowadays. Finally, we
discuss the relation between FPPF and epistemic logic.

III.5.1 Epistemic Logic and SNSs
In the past, epistemic logic has been widely used for analysing security and privacy
properties in multi-agent systems (MAS). Traditionally the evolution of knowledge in
epistemic logic is modelled by means of runs and events, in the “run-and-systems” frame-
work, known as Interpreted Systems [29].

Halpern et al. [38] use Interpreted Systems to formalise the notion of secrecy in
MAS. They redefine the possibilistic and probabilistic security properties in epistemic
logic, in the form of a modal operator which allows them to reason about knowledge,
nondeterminism and probability together. Interpreted Systems also appear in [5], where
Balliu presents a knowledge-based account to specify information flow conditions in a
distributed setting. The main advantage of this approach is that it is able to express
complex policies based on epistemic logic. One of the main drawbacks of Interpreted
Systems is the high complexity of the model-checking. Nevertheless it has been studied
how to implement efficient model-checkers which make it possible to verify properties
of real systems. For instance, MCK [33] and MCMAS [53] are state of the art model
checkers for temporal-epistemic logics based on Interpreted systems. They have suc-
cessfully been used to verify security properties for several cryptographic protocols. We
are not aware of any specific use for verifying privacy policies.

Formalising Privacy Policies in Social Networks 77

Interpreted systems allow to represent the knowledge at different points in time.
There is no formal definition of the events that can be executed in order to specify how
knowledge evolves. Instead they require a description of the protocol which models the
evolution of knowledge. Dynamic Epistemic Logic (DEL) provides a basis for operations
on knowledge evolution in epistemic logic [7, 74]. DEL encodes informational events
by defining update operations over the classical Kripke models in epistemic logic. The
most important feature with respect to the work carried out for this paper is the public
announcement, which consists in the action of disclosing a piece of information to a set
of agents.

It has recently been studied how to model the propagation of knowledge over the
agents of an SNS by using DEL. In [84] Seligman et al. define dynamic epistemic friend-
ship logic (DEFL), which on one hand, extends the classical Kripke model for epistemic
logic with the information about the friendship relationships, and on the other hand,
uses DEL to encode public and private announcements in the SNS. A private announce-
ment is a disclosure of information between two agents, in which only the two involved
agents are aware of the fact that the announcement occurred. In [80], DEL has been
used to study, by means of a formal technique, the effect “Revolt or Stay-at-Home” in
SNSs. This effect represents how the fact of knowing how many people (or agents) are
going to revolt could influence our own decision to revolt or stay at home.

DEL turns out to be not well-suited to our setting. Firstly, because it is based in
the classical Kripke semantics for epistemic logic [29]. As we describe in Section III.5.3,
there are properties of knowledge that need to be further studied before we can encode
SNMs in Kripke structures. Secondly, DEL is only used for modelling the evolution
of knowledge, in our framework apart from epistemic rules, we allow for topological,
policy and hybrid rules. Finally, and most importantly, the events defined in DEL
are not equipped with conditions, i.e. the execution of events does not depend on the
knowledge of the agents. By contrast, the execution of events in SNSs depends not only
on the agents’ knowledge, but also other network-dependent factors. As described in
Section III.3.3, we use the premises of the rules when stating the conditions for each
event.

III.5.2 Relationship-based Access Control
Currently SNS users share their resources by using the so called Relationship-Based
Access Control (ReBAC). This paradigm gives access to user resources depending on
her relationships with the owner of the resource. Fong et al. introduce a formalism
that aims at providing a better understating of ReBAC [32, 31]. They develop a gen-
eral formalism which can be instantiated, first in mono-relational social networks, e.g.

78 Chapter III

Facebook-like networks where the relationship between agents is friendship, and later
in a more general setting, with poly-relational social networks where the type of the
relationship is also taken into account (e.g. patient-physician, parent-child). In addi-
tion, they introduce the notion of access contexts, defined as a hierarchy of contexts
to enable an inheritance mechanism of relationships. Hence the access to the resources
also offers the possibility of articulating relationships between users depending on the
access context. The audience of the resources is defined by means of ReBAC policies.
In [12] Bruns et al. provide a language based on a hybrid logic which extends Fong’s
work and supports interesting policy idioms.

By contrast to our work, the ReBAC paradigm is not able to detect appropriately
implicit disclosure of information. For example, if a user posts the location of another
user, the latter has no control over the audience of her location. Therefore, the owner of
the post defines the audience of another user’s location. In our framework, the structure
of the predicates can encode the actual owner of a resource independently of the user
disclosing the information. Due to that, a user can later define a privacy policy which
would protect a particular piece of her information, independently of who was the user
disclosing that information. We claim that FPPF is not only as expressive as ReBAC
but also it is able to detect implicit leaks of information as the one mentioned above.
A formal comparison between the expressiveness of both frameworks is left as future
work. The main advantage of ReBAC is its efficiency to enforce privacy policies, since
it only requires to check whether the user who is trying to access some information is
part of the audience. In our framework, we do not have performance results yet, hence
we postpone the comparison to future work.

III.5.3 FPPF vs Epistemic Logic
The main difference between the semantics of FPPF and First-Order Epistemic Logic
(FOEL) is the way knowledge is interpreted. SNMs “store” in each node a set of
FKBL formulae that represent what an agent knows, namely the knowledge base of the
agent. On the contrary, in relational Kripke structures, the uncertainty of the agents is
modelled by means of a binary relation (K) among states in the Kripke structure [29,
59]. The binary relation represents all the states that an agent considers possible. If a
formula is true in all those states, then the agent knows that formula.

Nevertheless, this does not mean that the two models are complementary. In [29]
Fagin et al. show how to construct knowledge bases for systems consisting of several
agents by using knowledge-based programming. They define the state of an agent as a
tuple containing all formulae the agent knows at a particular point in time. In addition
to this information, the SNMs contain additional information regarding permissions and

Formalising Privacy Policies in Social Networks 79

connections between users. As a matter of fact, we have shown that given a formula
φ which characterises the knowledge, permission and connections of all agents in the
SNM, a relational Kripke structure can be constructed containing the same information.
Concretely, the canonical Kripke structure [29] resulting from φ can be built [72].

III.6 Conclusions and Future Work
In this paper we have presented a formal privacy policy framework which captures the
dynamic behaviour of SNSs. The framework allows us to reason about privacy policies in
dynamic social networks by means of a labelled transition system. The framework was
enhanced with a set of operational semantics rules, which we instantiated for Twitter
and for the tagging event in Facebook. We have shown how a designer can use our
framework to model dynamic features of SNSs. Finally, we have introduced the notion
of privacy-preserving SNS. As a proof-of-concept, we have formally proved that Twitter
preserves privacy (according to our notion of privacy-preserving SNS). In addition, we
have proved that adding new (and desirable) privacy policies to Twitter and Facebook
makes their behaviour not privacy-preserving. We have also shown that the proofs
provide useful information about which events are violating the privacy policies. In
particular, we have shown how to update the Facebook instantiation to support new
policies by analysing the information from the earlier proof where we showed that
Facebook does not preserve the new privacy policy. In what follows we discuss some
possible directions of future work.

Enforcement
There are two possible ways to make sure that an SNS is preserving-privacy using
FPPF . Firstly, designers can write a dynamic instantiation of the SNS that they want
to implement. Then, they can formally prove that the operational semantics rules that
were defined in that instantiation are privacy-preserving. This is similar to what we
have shown for Twitter and Facebook. If the SNS designer proves that the SNS is
privacy-preserving, then no verification at runtime is required, avoiding any additional
overhead.

On the other hand, we would like to provide a runtime enforcement mechanism for
SNSs under consideration. The main advantage of this approach is that it is partially
independent of the implementation of the SNS. It only tracks the require information
so that it can ensure that no privacy policy is violated. We are currently studying how
to extract a monitor from the specification of the privacy policies, which would run in
parallel with the SNS. The monitor checks that the privacy policies of the users are not

80 Chapter III

violated as they execute events. To avoid the bottleneck of a centralised algorithm, we
are considering a distributed implementation. We are already implementing FPPF in
an open source SNS called Diaspora* [22, 21] to show the practicality of our approach.

Privacy Policies and Time
Privacy policies in FPPF cannot express real time properties. For example, a user may
want to write a policies like “My boss cannot know my location between 20:00-23:00”
or “The audience of the post on my timeline during my birthday is only my friends”.
Adding a temporal component to our framework is a natural extension. Specific parts of
the framework will become sensitive to the particular time at which the events happen.
This needs to record when particular pieces of information are learnt, i.e., if Bob learnt
Alice’s location last week and today he learns it again, then then one should be able to
tell apart these two locations.

In order to have a fine-grained control over time, we also need to differentiate between
the timestamp of the information and when it was learnt. Imagine that Bob learns
on Tuesday Alice’s location from last Saturday. The predicate representing Alice’s
location has timestamp Saturday, but Bob learnt it on Tuesday. To make this distinction
explicit, we can add timestamps to predicates and modalities. For example, the previous
statement can be formalised as KTuesday

Bob loc(Alice,Saturday). Additionally, we plan to
include quantification over timestamps so that it is possible to specify intervals of time
when privacy policies must be enforced.

Formalising Privacy Policies in Social Networks 81

III.A Appendix

III.A.1 Dynamic Instantiation of Twitter
In this appendix we provide a full dynamic instantiation for Twitter. We first provide
the the set of events EVTTwitter. Finally, we define the complete set of operational
semantics rules for all of the events.

Set of events of Twitter

We define the set EVTTwitter which contains all the events involved in the privacy
analysis of Twitter.
EVTTwitter consists of the following elements:

• tweet - It is one the core events of Twitter. It is used to post some piece informa-
tion.

• retweet - It is used to share an already tweeted tweet.

• favourite - It allows users to classify tweets as favourite.

• accessProf - It represents the action of accessing a user’s profile.

• createProf - It is the first event a user executes for joining Twitter. The user is
required to provide a set of basic information which determines her profile.

• follow - Users can connect with other users by means of the Follower relationship.

• acceptFollowReq - When a user’s profile is not public the follow event enables a
request to the user. In order for the connection to be established the request must
be accepted. This event represents the action of accepting the request.

• block, unblock - In Twitter a user can block other users. Not allowing to follow
her, and can revert this decision.

• showReco - Twitter shows a selection of recommended-to-follow user recommen-
dations to other users, when the email or the phone number of the recommended
user is known by the one to whom the recommendation is shown.

• showAdv - This event models the action of a company sending an advertisement
to a concrete user.

• allowAdv, disallowAdv - A user can (dis)allow a company from sending advertise-
ment. These events model the activation and deactivation of this permission.

82 Chapter III

• changeStPriv, changeStPub - These events model the switching between ’Private’
or ’Public’ accounts.

• inclLoc, notInclLoc - These events represent whether the location is included or
not in the tweet, respectively.

In what follows we provide the operational semantics rules for each of the events in
EVTTwitter.

Operational Semantics Rules of Twitter

Here we introduce all the operational semantics rules for the instantiation FPPFD
Twitter.

As usual, we divide them in Epistemic, Topological, Policy and Hybrid. Note that we
only write the elements of A involved in the rule and we write “_” to denote the rest
of the elements (see Definition 2).

Formalising Privacy Policies in Social Networks 83

Epistemic

R1 - Tweet

Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}
state(tu) == ’Public’

inclocation(u) == true ∀p(#»
t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {CAup(

#»
t)}

⟨_,_,KB,_⟩ tweet(tu,TweetInfo)−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R1.1.1)

Au = followers(tu) ∪ {u}
state(tu) == ’Private’ inclocation(u) == false location(tu, η) ̸∈ TweetInfo

∀p(#»
t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {CAup(

#»
t)}

⟨_,_,KB,_⟩ tweet(tu,TweetInfo)−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R1.2.2)

Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}
state(tu) == ’Public’ inclocation(u) == false location(tu, η) ̸∈ TweetInfo

∀p(#»
t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {CAup(

#»
t)}

⟨_,_,KB,_⟩ tweet(tu,TweetInfo)−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R1.1.2)

Au = followers(tu) ∪ {u} state(tu) == ’Private’
inclocation(u) == true ∀p(#»

t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {CAup(
#»
t)}

⟨_,_,KB,_⟩ tweet(tu,TweetInfo)−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R1.2.1)

R2 - Retweet

F = getTweetInfo(tu, η) state(tu) == ’Public’
state(rtu) == ’Public’ TweetInfoAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}
RetweetAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu} tweet(tu, η) ∈ KB(rtu)

∀p(#»
t) ∈ F ∀i ∈ TweetInfoAu KB′(i) = KB(i) ∪ {CAup(

#»
t)}

∀i ∈ RetweetAu KB′(i) = KB(i) ∪ {CRetweetAuretweet(rtw, tu, η)}

⟨_,_,KB,_⟩ retweet(rtu,tweet(tu,η))−−−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R2.1)

F = getTweetInfo(tu, η) state(tu) == ’Public’
state(rtu) == ’Private’ TweetInfoAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}

RetweetAu = followers(rtu) ∪ {rtu} tweet(tu, η) ∈ KB(rtu)
∀p(#»

t) ∈ F ∀i ∈ TweetInfoAu KB′(i) = KB(i) ∪ {CAup(
#»
t)}

∀i ∈ RetweetAu KB′(i) = KB(i) ∪ {CRetweetAuretweet(rtw, tu, η)}

⟨_,_,KB,_⟩ retweet(rtu,tweet(tu,η))−−−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R2.2)

84 Chapter III

R3 - Favourite

tweet(tu, η) ∈ KB(fu) ∀i ∈ {fu, tu} KB′(i) = KB(i) ∪ {favourite(fu, tu, η)}

⟨_,_,KB,_⟩ favourite(fu,tweet(tu,η))−−−−−−−−−−−−−−−−→ ⟨_,_,KB′,_⟩
(R3)

R4 - Access profile

F = info(acd) [(acr, acd) ∈ AaccessProf ∨ (acr, acd) ∈ AaccessProfRec]

state(acd) = ’Public’ ∀p(#»
t) ∈ F KB′(acr) = KB(acr) ∪ {p(#»

t)}

⟨_, {{Ai}i∈Σ,_},KB,_⟩ accessProf(acr,acd)−−−−−−−−−−−−−→ ⟨_, {{Ai}i∈Σ,_},KB′,_⟩
(R4.1)

F = info(acd)
[(acr, acd) ∈ AaccessProf ∨ (acr, acd) ∈ AaccessProfRec] state(acd) = ’Private’

(acd, acr) ∈ CFollower ∀p(#»
t) ∈ F KB′(acr) = KB(acr) ∪ {p(#»

t)}

⟨_, {{Ai}i∈Σ, {{Ci}i∈C ,_},KB,_⟩ accessProf(acr,acd)−−−−−−−−−−−−−→ ⟨_, {{Ai}i∈Σ, {Ci}i∈C ,_}KB′,_⟩
(R4.2)

R10 - Show recommendation

beingReco(recommended) == false email(recommended) ∈ KB(viewer)
A′

accessProfRec = AaccessProfRec ∪ {(viewer, recommended)}

⟨_, {{Ai}i∈Σ,_},KB,_⟩ showReco(recommended,viewer)−−−−−−−−−−−−−−−−−−−−−→ ⟨_, {{A′
i}i∈Σ,_},KB,_⟩

(R10.1)

beingReco(recommended) == true
A′

accessProfRec = AaccessProfRec ∪ {(viewer, recommended)}

⟨_, {{Ai}i∈Σ,_},_,_⟩ showReco(recommended,viewer)−−−−−−−−−−−−−−−−−−−−−→ ⟨_, {{A′
i}i∈Σ,_},_,_⟩

(R10.2)

R11 - Show advertisment

(advertiser, user) ∈ AsendAd KB′(user) = KB(user) ∪ {advertise(advertiser, η)}

⟨_, {{Ai}i∈Σ,_},KB,_⟩ showAdv(advertiser,user)−−−−−−−−−−−−−−−−→ ⟨_, {{Ai}i∈Σ,_},KB′,_⟩
(R11)

Topological

R6 - Follow (R6.2 is a hybrid rule)

(followed, follower) ̸∈ CBlock state(followed) == ’Public’
(follower, followed) ̸∈ CFollower C ′

Followers = CFollowers ∪ {(follower, followed)}

⟨_, {{Ci}i∈C ,_},_,_⟩ follow(follower,followed)−−−−−−−−−−−−−−−→ ⟨_, {{C ′
i}i∈C ,_},_,_⟩

(R6.1)

Formalising Privacy Policies in Social Networks 85

R7 - Accept follow request

followRequest(accepted) ∈ KB((accepter)
C ′

Followers = CFollowers ∪ {(follower, followed)}

⟨_, {{Ci}i∈C ,_},KB,_⟩ (acceptFollowReq((accepter,(accepted)−−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨_, {{C ′
i}i∈C ,_},KB,_⟩

(R7)

R8 - Block
(blocker, blocked) ̸∈ CFollower

(blocker, blocked) ̸∈ CBlock C ′
Block = CBlock ∪ {(blocker, blocked)}

⟨_, {{Ci}i∈C ,_},_,_⟩ block(blocker,blocked)−−−−−−−−−−−−−−→ ⟨_, {{C ′
i}i∈C ,_},_,_⟩

(R8.1)

(blocker, blocked) ∈ CFollower (blocker, blocked) ̸∈ CBlock
C ′

Block = CBlock ∪ {(blocker, blocked)} C ′
Followers = CFollowers \ {(blocker, blocked)}

⟨_, {{Ci}i∈C ,_},_,_⟩ block(blocker,blocked)−−−−−−−−−−−−−−→ ⟨_, {{C ′
i}i∈C ,_},_,_⟩

R8.2

R9 - Unblock
(unblocker, unblocked) ∈ RBlock C ′

Block = CBlock \ {(unblocker, unblocked)}

⟨_, {{Ci}i∈C ,_},_,_⟩ unblock(unblocker,unblocked)−−−−−−−−−−−−−−−−−−−→ ⟨_, {{C ′
i}i∈C ,_},_,_⟩

(R9)

Policy

R14 - Change state to private

π′
u = πu ∪ {P1(u), P2(u)}

⟨_,_,_, π⟩ changeStPriv(u)−−−−−−−−−−→ ⟨_,_,_, π′⟩
(R14)

R15 - Change state to public

π′
u = πu \ {P1(u), P2(u)}

⟨_,_,_, π⟩ changeStPub(u)−−−−−−−−−−→ ⟨_,_,_, π′⟩
(R15)

R16 - Include location on Tweets
π′
u = πu \ {P3(u)}

⟨_,_,_, π⟩ inclLoc(u)−−−−−−−→ ⟨_,_,_, π′⟩
(R16)

R17 - Not include location on Tweets
π′
u = πu ∪ {P3(u)}

⟨_,_,_, π⟩ notInclLoc(u)−−−−−−−−−→ ⟨_,_,_, π′⟩
(R17)

86 Chapter III

Hybrid

R5 - Create profile

u ̸∈ Ag Ag′ = Ag ∪ {u} KB′
i = InitialInfo

∀j ∈ Advertisers A′
sendAd = AsendAd ∪ {(u, j)} A′

accessProf = AaccessProf ∪ {(u, u)}

⟨Ag, {{Ai}i∈Σ,_},KB,_⟩ createProf(u,InitialInfo)−−−−−−−−−−−−−−−−→ ⟨Ag′, {{A′
i}i∈Σ,_},KB′,_⟩

(R5)

R6 - Follow (R6.1 is a topological rule)

(followed, follower) ̸∈ CBlock
state(followed) == ’Private’ (follower, followed) ̸∈ CFollower

Request = {C{followed,follower}followRequest(follower)}
∀i ∈ {followed, follower} KB′(i) = KB(i) ∪ Request

⟨_, {{Ci}i∈C ,_},KB,_⟩ follow(follower,followed)−−−−−−−−−−−−−−−→ ⟨_, {{Ci}i∈C ,_},KB′,_⟩
(R6.2)

R12 - Allow advertisment

∀i ∈ Advertisers A′
sendAd = AsendAd ∪ {(i, u)}

π′
u = πu ∪ {P5(u)}

⟨_, {{Ai}i∈Σ,_},_, π⟩ allowAdv(Advertisers,u)−−−−−−−−−−−−−−−→ ⟨_, {{A′
i}i∈Σ,_},_, π′⟩

(R12)

R13 - Disallow advertisement

P5(u) ∈ π(u) ∀i ∈ Advertisers A′
sendAd = AsendAd \ {(i, u)}

π′
u = πu \ {P5(u)}

⟨_, {{Ai}i∈Σ,_},_, π⟩ disallowAdv(Advertisers,u)−−−−−−−−−−−−−−−−−→ ⟨_, {{A′
i}i∈Σ,_},_, π′⟩

(R13)

Formalising Privacy Policies in Social Networks 87

III.A.2 Proofs
Theorem 1 - Twitter is privacy-preserving

The proof will be split in as many cases as rules we defined for FPPFD
Twitter, i.e. from

R1 to R17, where we show that any rule will violate any privacy policy. For each of
the rules we will state which privacy policies could be violated. The structure of each
case of the proof is similar. We proof for all the policies that could violate the event
that if the privacy policy is in conformance with the SNM before the execution of the
event, then after the execution of the event, the privacy policy is still preserved in the
resulting SNM. We start by assuming that after the executing of the event the policy is
violated and later we show that it leads to a contradiction. After proving it for all for
rules and privacy policies we conclude that Twitter is privacy-preserving. In the proof
we use bold text to state the rule and the possible privacy policies which it can violate,
and underline text to split the proof cases for each of those privacy policies.

Proof. R1 – The execution of R1 could only violate the policies P1 and P3

9. Executing R1 and P1 enabled

9.1. Given
9.1.1. u ∈ Ag (owner of the privacy policy P1(u))
9.1.2. Predicates to be disclosed TweetInfo ⊆ 2P where tweet(u, η) ∈ TweetInfo
9.1.3. e = tweet(u,TweetInfo)
9.1.4. We want to prove:

SN ⊨C P1(u) and SN e−→ SN′ then SN′ ⊨C P1(u)

9.2. By contradiction, let us assume
9.2.1. SN ⊨C P1(u) and SN e−→ SN′

9.2.2. SN′ ̸⊨C P1(u)

9.3. By 18.2.2.
9.3.1. SN′ ̸⊨C P1(u) [Definition ⊨C]
9.3.2. SN′, u ⊨ ¬¬SAg\followers(u)\{u}tweet(u, η) [¬¬e]
9.3.3. SN′, u ⊨ SAg\followers(u)\{u}tweet(u, η)

88 Chapter III

9.4. By 18.3.5. and the definition of ⊨ we have
9.4.1. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN′ ⊨ Kitweet(u, η)

9.5. By Definition of R1, we have that
9.5.1. ∀p(#»

t) ∈ TweetInfo SN′ ⊨ Cfollowers(u)∪{u}p(
#»
t) [By 9.1.2.]

9.5.2. SN′ ⊨ Cfollowers(u)∪{u}tweet(u, η) [By ⊨]
9.5.3. SN′ ⊨ E0

followers(u)∪{u}tweet(u, η)∧
E1
followers(u)∪{u}tweet(u, η)∧

E2
followers(u)∪{u}tweet(u, η)∧

E3
followers(u)∪{u}tweet(u, η) ∧ . . . [By ⊨]

9.5.4. SN′ ⊨ E1
followers(u)∪{u}tweet(u, η) [By ⊨]

9.5.5. ∀j ∈ followers(u) ∪ {u} SN ⊨ Kjtweet(u, η)

9.6. By 18.2.1. we have
9.6.1. SN ⊨C P1(u) [By ⊨C]
9.6.2. SN ⊨ ¬SAg\followers(u)\{u}tweet(u, η) [By Definition SG]
9.6.3. SN ⊨ ¬(

∨
i∈Ag\followers(u)\{u}Kitweet(u, η)) [Morgan]

9.6.4. SN ⊨
∧
i∈Ag\followers(u)\{u} ¬Kitweet(u, η)

9.7. By 9.6.4. and 18.5.4. we have
9.7.1. SN′ ⊨C P1(u)

9.8. By 18.2.2. and 9.7.1. we derive a contradiction.

10. Executing R1 and P3 enabled

10.1. Given
10.1.1. u ∈ Ag (owner of the privacy policy P3(u))
10.1.2. Predicates to be disclosed TweetInfo ⊆ 2P

10.1.3. Location of the tweet location(u, η)
10.1.4. Au ⊆ Ag
10.1.5. e = tweet(u,TweetInfo)
10.1.6. We want to prove:

SN ⊨C P3(u) and SN e−→ SN′ then SN′ ⊨C P3(u)

Formalising Privacy Policies in Social Networks 89

10.2. By contradiction, let us assume
10.2.1. SN ⊨C P3(u) and SN e−→ SN′

10.2.2. SN′ ̸⊨C P3(u)

10.3. By 10.2.1. and ⊨C
10.3.1. SN′ ⊨ ¬¬SAg\{u}location(u, η) [¬¬e]
10.3.2. SN′ ⊨ SAg\{u}location(u, η) [By ⊨]
10.3.3. ∃i ∈ Ag \ {u} such that SN′ ⊨ Kilocation(u, η)

10.4. By Definition of R1
10.4.1. ∀p(#»

t) ∈ TweetInfo \ {location(u, η)} SN′ ⊨ CAup(
#»
t)

10.5. By 10.2.1. and the definition of ⊨C
10.5.1. SN ⊨ ¬SAg\{u}locationη [Definition SG]
10.5.2. SN ⊨ ¬(

∨
i∈Ag\{u}Kilocation(u, η)) [Morgan]

10.5.3. SN ⊨
∧
i∈Ag\{u} ¬Kilocation(u, η)

10.6. By 10.4.1. and 10.5.3.
10.6.1. SN′ ⊨C P3(u)

10.7. By 10.6.1. and 10.2.2. we derive a contradiction.

R2 - The execution of R2 could only violate the policies P2 and P3

11. Executing R2 and P2 enabled

11.1. Given
11.1.1. u ∈ Ag (owner of P2(u) and retweeter)
11.1.2. tweet(tu, η) (tweet η ∈ N of user tu ∈ Ag)
11.1.3. e = retweet(u, tweet(tu, η))
11.1.4. We want to prove:

SN ⊨C P2(u) and SN e−→ SN′ then SN′ ⊨C P2(u)

90 Chapter III

11.2. By contradiction, let us assume
11.2.1. SN ⊨C P2(u) and SN e−→ SN′

11.2.2. SN′ ̸⊨C P2(u)

11.3. By 11.2.1. and ⊨C
11.3.1. SN′ ⊨ ¬¬SAg\followers(u)\{u}retweet(u, tu, η) [¬¬e]
11.3.2. SN′ ⊨ SAg\followers(u)\{u}retweet(u, tu, η) [By ⊨]
11.3.3. ∃i ∈ Ag \ followers(u) \ {u} such that SN′ ⊨ Kilocation(u, η)

11.4. By Definition of R2
11.4.1. SN′ ⊨ Cfollowers(u)∪{u}retweet(u, tu, η) [By ⊨]
11.4.2. SN′ ⊨ Cfollowers(u)∪{u}retweet(u, tu, η) [By ⊨]
11.4.3. SN′ ⊨ E0

followers(u)∪{u}retweet(u, tu, η)∧
E1

followers(u)∪{u}retweet(u, tu, η)∧
E2

followers(u)∪{u}retweet(u, tu, η)∧
E3

followers(u)∪{u}retweet(u, tu, η) ∧ . . . [By ⊨]
11.4.4. SN′ ⊨ E1

followers(u)∪{u}retweet(u, tu, η) [By ⊨]
11.4.5. ∀j ∈ followers(u) ∪ {u} SN′, j ⊨ Kjretweet(u, tu, η)

11.5. By 11.2.1. and the definition of ⊨C
11.5.1. SN ⊨ ¬SAg\followers(u)\{u}retweet(u, tu, η) [Definition SG]
11.5.2. SN ⊨ ¬(

∨
i∈Ag\followers(u)\{u}Kiretweet(u, tu, η)) [Morgan]

11.5.3. SN ⊨
∧
i∈Ag\followers(u)\{u} ¬Kiretweet(u, tu, η)

11.6. By 11.4.5. and 11.5.3.
11.6.1. SN′ ⊨C P2(u)

11.7. By 11.6.1. and 11.2.2. we derive a contradiction.

12. Executing R2 and P3 enabled

12.1. Given
12.1.1. u ∈ Ag (owner of P3(u) and retweeter)
12.1.2. tweet(tu, η) (tweet η ∈ N of user tu ∈ Ag)

Formalising Privacy Policies in Social Networks 91

12.1.3. TweetInfoAu ⊆ Ag (audience of the retweeted tweet)
12.1.4. RetweetAu ⊆ Ag (audience of the fact of retweeting)
12.1.5. e = retweet(u, tweet(tu, η))

12.1.6. We want to prove:

SN ⊨C P3(u) and SN e−→ SN′ then SN′ ⊨C P3(u)

12.2. By contradiction, let us assume
12.2.1. SN ⊨C P3(u) and SN e−→ SN′

12.2.2. SN′ ̸⊨C P3(u)

12.3. By 12.2.1. and ⊨C
12.3.1. SN′ ⊨ ¬¬SAg\{u}location(tu, η) [¬¬e]
12.3.2. SN′ ⊨ SAg\{u}location(tu, η) [By ⊨]
12.3.3. ∃i ∈ Ag \ {u} such that SN′ ⊨ Kilocation(u, η)

12.4. By Definition of R2
12.4.1. ∀p(#»

t) ∈ getTweetInfo(tu, η) \ {location(tu, η)} SN′ ⊨ CTweetInfoAup(
#»
t)

12.5. By 12.2.1. and the definition of ⊨C
12.5.1. SN ⊨ ¬SAg\{u}location(tu, η) [Definition SG]
12.5.2. SN ⊨ ¬(

∨
i∈Ag\{u}Kilocation(tu, η)) [Morgan]

12.5.3. SN ⊨
∧
i∈Ag\{u} ¬Kilocation(tu, η)

12.6. By 12.4.1. and 12.5.3.
12.6.1. SN′ ⊨C P3(u)

12.7. By 12.6.1. and 12.2.2. we derive a contradiction.

R3 – None of the privacy policies in Definition 12 can be violated by rule
R3

Since favourite(u, tu, η) is the only predicate disclosed during the execution of R3 and

92 Chapter III

none of the privacy policies in Definition 12 specify any restriction against this predicate,
it would not be possible that a violation of them occurs.

R4 – The execution of R4 could violate the privacy policies P1, P2, P3

13. Executing R4 and P1 enabled

13.1. Given
13.1.1. acd ∈ Ag (owner of P1(acd))
13.1.2. acr ∈ Ag (agent who is executing R4)
13.1.3. e = accessProf(acd, acr)
13.1.4. We want to prove:

SN ⊨C P1(acd) and SN e−→ SN′ then SN′ ⊨C P1(acd)

13.2. We assume
13.2.1. ∃ tweet(acd, η) ∈ info(acd) (otherwise 13.1.4. trivially holds)

13.3. By contradiction, let us assume
13.3.1. SN ⊨C P1(acd) and SN e−→ SN′

13.3.2. SN′ ̸⊨C P1(acd)

13.4. By 13.3.2.
13.4.1. SN′ ̸⊨C P1(acd) [Definition ⊨C]
13.4.2. SN′ ⊨ ¬¬SAg\followers(u)\{u}u.tweetη [¬¬e]
13.4.3. SN′ ⊨ SAg\followers(u)\{u}tweet(u, η)[By ⊨]
13.4.4. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN′ ⊨ Kitweet(acd, η)

13.5. By 13.3.1., 13.1.3., Definition of state and Definition of R4, we have that
13.5.1. If (acr, acd) ∈ CFollower

13.5.1.1. ∀p(#»
t) ∈ info(acd) SN′ ⊨ Kacrp(

#»
t) [By 13.2.1.]

13.5.1.2. SN′, acr ⊨ Kacrtweet(acd, η)

Formalising Privacy Policies in Social Networks 93

13.5.2. If (acr, acd) ̸∈ CFollower

13.5.2.1. R4 will not be executed.

13.6. By 13.3.1. we have
13.6.1. SN ⊨C P1 [By ⊨C]
13.6.2. SN ⊨ ¬SAg\followers(acd)\{acd}tweet(acd, η) [By Definition SG]
13.6.3. SN ⊨ ¬(

∨
i∈Ag\followers(acd)\{acd}Kitweet(acd, η)) [Morgan]

13.6.4. SN ⊨
∧
i∈Ag\followers(acd)\{acd} ¬Kitweet(acd, η)

13.7. By 13.6.4. and 13.5.1.2. and 13.5.2.1. we have
13.7.1. SN′ ⊨C P1(acd)

13.8. By 13.3.2. and 13.7.1. we derive a contradiction.

14. Executing R4 and P2 or P3 enabled

14.1. The exact same reasoning as before can be applied for P2 and P3 by replacing
tweet(acd, η) with retweet(acd, u, η) or location(acd, η), respectively. This is because the
function info(acd) will return also those predicates in case the are part of the accessed
user information.

R5 − R9 – None of the privacy policies in Definition 12 can be violated by
the rules R5 − R9

Since there is neither disclosure of information nor granting of permission it is not
possible to violate any of the defined privacy policies.

R10 – The execution of R10 could violate the privacy policy P4

15. Executing R10 and P4 enabled

15.1. Given
15.1.1. r ∈ Ag (Owner of P4(r), i.e. P4(r) ∈ πr)

94 Chapter III

15.1.2. If P4(r) ∈ πr then the case R10.1 is the one which will be executed
15.1.3. e = showReco(r, v)
15.1.4. We want to prove:

SN ⊨C P4(r) and SN e−→ SN′ then SN′ ⊨C P4(r)

15.2. By contradiction, let us assume
15.2.1. SN ⊨C P4(r) and SN e−→ SN′

15.2.2. SN′ ̸⊨C P4(r)

15.3. By 15.2.2.
15.3.1. SN′ ̸⊨C P4(r) [By ⊨C]
15.3.2. SN′ ⊨ ¬∀x.(¬Kx(email(r) ∨ phone(r)) =⇒ ¬P rxaccessProfRec) [By ¬∀z.φ ≡
∃z.¬φ]
15.3.3. SN′ ⊨ ∃x.¬(¬Kx(email(r) ∨ phone(r)) =⇒ ¬P rxaccessProfRec) [By ∃e, where
φ[v/x]]
15.3.4. SN′ ⊨ ¬(¬Kv(email(r) ∨ phone(r)) =⇒ ¬P rv accessProfRec) [By ⊨]
15.3.5. SN′ ⊨ ¬(¬(¬Kv(email(r) ∨ phone(r))) ∨ (¬P rv accessProfRec)) [¬¬e]
15.3.6. SN′ ⊨ ¬(Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec) [Morgan]
15.3.7. SN′ ⊨ ¬Kv(email(r) ∨ phone(r)) ∧ P rv accessProfRec

15.4. By 15.1.2. and 15.2.1. and Definition of R10
15.4.1. If SN ⊨ Kv(email(r) ∨ phone(r))
15.4.1.1. SN′ ⊨ Kv(email(r) ∨ phone(r)) ∧ P rv acessProfRecommended
15.4.2. If SN ⊨ ¬Kv(email(r) ∨ phone(r))
15.4.2.1. R10.1 is not executed

15.5. By 15.2.1. we have
15.5.1. SN ⊨C P4(r) [By ⊨C]
15.5.2. SN ⊨ ¬Kv(email(r) ∨ phone(r)) =⇒ ¬P rv accessProfRec [By ⊨]
15.5.3. SN ⊨ ¬¬Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec [¬¬e]
15.5.4. SN ⊨ Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec [¬¬i]
15.5.5. SN ⊨ ¬¬(Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec) [Morgan]
15.5.6. SN ⊨ ¬(¬Kv(email(r) ∨ phone(r)) ∧ P rv accessProfRec)

Formalising Privacy Policies in Social Networks 95

15.6. By 15.5.6. and 15.4.1.1.
15.6.1. SN′ ⊨C P4(r)

15.7. By 15.6.1. and 15.2.2. we derive a contradiction.

R11 − R13 – None of the privacy policies in Definition 12 can be violated
by the rules R11 − R13

One could think that R11 may violate P5. However, the policy is preserved in-
trinsically in the definition of the rules R12, R13. Since it is checked beforehand if an
advertiser have permission or not to send an advertisement. Basically activating or de-
activating the policy would mean granting or removing permission to the advertisement
companies to execute the action sendAd to the user.

R14 − R17 – None of the privacy policies in Definition 12 can be violated
by the rules R14 − R17

These rules only aggregate or remove privacy policies to the users, they don’t modify
neither their knowledge nor their permission.

Finally we can conclude that FPPFD
Twitter is a privacy-preserving social network.

Lemma 1 - Twitter is not privacy-preserving

We will show that from a social network model which preserves the privacy policy, after
executing the event tweet (as it is defined in FPPFD

Twitter) mentioning a user and adding
the location, the privacy policy would be violated.

Proof Sketch: Assume a user u ∈ Ag who has never been mentioned and has one
instance of P6(u) in her set of policies, and another user o ∈ Ag who executes the event

e = tweet(o, {tweet(o, η),mention(u, o, η), location(o, η)}).

If the result of executing the event in SN is SN′, SN e−→ SN′, then by assumption we
know that SN ⊨C P6(u), but according to R1, we know that all users in the audience
of the tweet will learn mention(u, o, η) and location(o, η) and therefore SN′ ̸⊨C P6(u).

Proof.

96 Chapter III

16. Executing R1 and P6 activated

16.1. Given
16.1.1. User u ∈ Ag such that SN ⊨C P6(u)

16.1.2. inclocation(u) == true

16.1.3. TweetInfo = {tweet(tu, η), location(tu, η),mention(u, tu, η)}
16.1.4. e = tweet(tu,TweetInfo)
16.1.5. We want to prove

SN ⊨C P6(u) and SN e−→ SN′ then SN′ ̸⊨C P6(u)

16.2. Let us assume
16.2.1. SN′ ̸⊨C P6(u) [By ⊨C]
16.2.2. SN′ ⊨ ¬(Kilocation(tu, η) ∧Kimention(u, tu, η))

16.3. Let us assume
16.3.1. SN ⊨C P6(u) and SN e−→ SN′

16.4. By the Definition of R1 and 17.1.7.
16.4.1. If state(tu) == ’Public’
16.4.2. ∀p(#»

t) ∈ TweetInfo SN′ ⊨ Cfollowers(tu)∪{tu}p(
#»
t) [By 16.1.3.]

16.4.3. SN′ ⊨ Cfollowers(tu)∪{tu}location(tu, η) ∧mention(u, tu, η) [By ⊨]
16.4.4. ∀i ∈ followers(tu) ∪ {tu}SN′ ⊨ Kilocation(tu, η) ∧mention(u, tu, η)
16.4.5. If state(tu) == ’Private’
16.4.6. ∀p(#»

t) ∈ TweetInfo SN′ ⊨ Cfollowers(tu)∪{tu}∪{u}p(
#»
t) [By 16.1.3.]

16.4.7. SN′ ⊨ Cfollowers(tu)∪{tu}∪{u}location(tu, η) ∧mention(u, tu, η) [By ⊨]
16.4.8. ∀i ∈ followers(tu) ∪ {tu} ∪ {u}SN′ ⊨ Kilocation(tu, η) ∧mention(u, tu, η)

16.5. By 16.4.4. and 16.4.8.
16.5.1. ∃i ∈ followers(tu) ∪ {tu}SN′ ⊨ Kilocation(tu, η) ∧mention(u, tu, η)

16.6. By 16.5.1. and 16.2.2. we derive a contradiction.

Formalising Privacy Policies in Social Networks 97

Lemma 2 - Facebook is not privacy-preserving

We will show that from a social network model which preserves the privacy policy FP1,
after executing the event acceptTagRequest (as it is defined in FPPFD

FB-Tag) a user
can be tagged without approving herself the tag.

Proof sketch: Let tge ∈ Ag be a user who has never been tagged and let tgr ∈ Ag be
a user who has executed the event tag(tgr, tge, o, η) in order to tag tge in picture(o, η)
where o ∈ Ag and η ∈ N. The owner of picture(o, η) is o. Therefore, in the cur-
rent social network model SN, it holds that tagRequest(tge, tgr, o, η) ∈ KB(o). In or-
der for FPPFD

FB-Tag to preserve privacy it must hold that if SN ⊨C FP1(tge) and

SN acceptTagRequest(o,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN′ where SN,SN′ ∈ SNFB-Tag then SN′ ⊨C
FP1(tge).

Since tge was not tagged before the execution of FR2 we know that SN ⊨C FP1(tge).
Also since tagRequest(tge, tgr, o, η) ∈ KB(o) and acptr == o we know that FR2 can
be executed. By the definition of FR2, we know that SN′ ⊨ EAutag(tge, o, o, η),
hence SN′ ̸⊨C FP1(tge), which contradicts our claim SN′ ⊨C FP1(tge) and therefore
FPPFD

FB-Tag is not privacy-preserving.

Proof.

17. Executing FR1 and FP1 activated

17.1. Given
17.1.1. User tge ∈ Ag such that SN ⊨C FP1(tge)

17.1.2. User o ∈ Ag such that tge ! = o

17.1.3. Picture picture(o, η) where η ∈ N
17.1.4. User tgr ∈ Ag
17.1.5. The owner of the picture is part of its audience o ∈ Au
17.1.6. Au = audience(picture(o, η))
17.1.7. e = acceptTagRequest(o, tge, tgr, picture(o, η))
17.1.8. We want to prove

SN ⊨C FP1(u) and SN e−→ SN′ then SN′ ̸⊨C FP1(u)

17.2. By contradiction, Let us assume
17.2.1. SN′ ⊨C FP1(tge) [By ⊨C]

98 Chapter III

17.2.2. SN′, tge ⊨ ∀o.∀t.∀η.(¬KtgetagRequest(t, tge, o, η) =⇒ ¬SAgtag(tge, t, o, η)) [By
Implication equivalence]
17.2.3. SN′ ⊨ ∀o.∀t.∀η.(KtgetagRequest(t, tge, o, η) ∨ ¬SAgtag(tge, t, o, η)) [By ¬¬i]
17.2.4. SN′ ⊨ ∀o.∀t.∀η.¬¬(KtgetagRequest(t, tge, o, η) ∨ ¬SAgtag(tge, t, o, η)) [By Mor-
gan]
17.2.5. SN′ ⊨ ∀o.∀t.∀η.¬(¬KtgetagRequest(t, tge, o, η) ∧ SAgtag(tge, t, o, η))

17.3. Let us assume
17.3.1. SN ⊨C FP1(tge) and SN e−→ SN′

17.4. By the Definition of FR1, 17.1.2.
17.4.1. SN′ ⊨ ¬KtgetagRequest(tgr, tge, o, η)

17.5. By the Definition of FR1, 17.1.7.
17.5.1. SN′ ⊨ CAutag(tge, tgr, o, η)[By ⊨]
17.5.2. SN′ ⊨ E0

Autag(tge, tgr, o, η)∧
E1

Autag(tge, tgr, o, η)∧
E2

Autag(tge, tgr, o, η)∧
E3

Autag(tge, tgr, o, η) ∧ . . . [By ⊨]
17.5.3. ∀j ∈ Au SN′ ⊨ Kjtag(tge, tgr, o, η) [Since o ∈ Au (17.1.5.)]
17.5.4. SN′ ⊨ Kotag(tge, tgr, o, η)

17.6. By 17.4.1., 17.5.4. and 17.2.5. we derive a contradiction.

Lemma 3 - Facebook is privacy-preserving

In the proof we consider all possible rules that can be executed and show that none
of them will violate FPU , which is the only policy available in the instantiation
FPPFD

FB-Tag.

Proof.

FR1 - Tag

None of the rules can violate FP1 because neither FR1.1 nor FR1.2 increase the audience
of any tag. Therefore if FP1 is not in conformance with the current SNM is because of

Formalising Privacy Policies in Social Networks 99

the execution an earlier event.

FR2 - Accept tag request

FR2.1 would not be executed if FP1(u) ∈ πu therefore the only case left is FR2.2.

FR2 - FR2.2.

18. Executing FR1 and FP1 enabled

18.1. Given
18.1.1. tge ∈ Ag (owner of the privacy policy FP1(tge))
18.1.2. picture(o, η) picture of user o ∈ Ag and η ∈ N
18.1.3. Au = audience(picture(o, η))
18.1.4. e = acceptTagRequest(acptr, tgr, picture(o, η))
18.1.5. We want to prove:

SN ⊨C FP1(u) and SN e−→ SN′ then SN′ ⊨C FP1(u)

18.2. By contradiction, let us assume
18.2.1. SN ⊨C FP1(u) and SN e−→ SN′

18.2.2. SN′ ̸⊨C FP1(u)

18.3. By 18.2.2.
18.3.1. SN′ ̸⊨C FP1(tge) [Definition ⊨C]
18.3.2. SN′ ⊨ ¬(∀o.∀t.∀η.¬KtgetagRequest(t, tge, o, η) =⇒ ¬SAgtag(tge, t, o, η))[By Im-
plication equivalence]
18.3.3. SN′ ⊨ ∃o.∃t.∃η.¬(KtgetagRequest(t, tge, o, η) ∨ ¬SAgtag(tge, t, o, η))[By Morgan]
18.3.4. SN′ ⊨ ∃o.∃t.∃η.¬KtgetagRequest(t, tge, o, η) ∧ SAgtag(tge, t, o, η))[By ⊨]
18.3.5. ∃i ∈ Au s.t. SN′, tge ⊨ ∃o.∃t.∃η.¬KtgetagRequest(t, tge, o, η)∧Kitag(tge, t, o, η))

18.4. By Definition of FR2.2, we have that
18.4.1. SN ⊨ KacptrtagRequest(tge, tgr, o, η)[By Definition FR2.2, acptr == tge]
18.4.2. SN ⊨ KtgetagRequest(tge, tgr, o, η)

100 Chapter III

18.5. By Definition of FR2.2, we have that
18.5.1. SN′ ⊨ CAutag(tge, tgr, o, η) [By ⊨]
18.5.2. SN′ ⊨ E0

Autag(tge, tgr, o, η)∧
E1

Autag(tge, tgr, o, η)∧
E2

Autag(tge, tgr, o, η)∧
E3

Autag(tge, tgr, o, η) ∧ . . . [By ⊨]
18.5.3. SN′ ⊨ E1

followers(u)∪{u}tweet(u, η) [By ⊨]
18.5.4. ∀j ∈ Au SN ⊨ Kjtag(tge, tgr, o, η)

18.6. By 18.4.2., 18.5.4. and 18.3.5. we derive a contradiction.

Finally we conclude that FPPFD
FB-Tag is a privacy-preserving social network.

101

Chapter IV

Model Checking Social
Network Models
Raúl Pardo and Gerardo Schneider

Abstract. A social network service is a platform to build social relations among people
sharing similar interests and activities. The underlying structure of a social networks
service is the social graph, where nodes represent users and the arcs represent the users’
social links and other kind of connections. One important concern in social networks
is privacy: what others are (not) allowed to know about us. The “logic of knowledge”
(epistemic logic) is thus a good formalism to define, and reason about, privacy policies.
In this paper we consider the problem of verifying knowledge properties over social
network models (SNMs), that is social graphs enriched with knowledge bases containing
the information that the users know. More concretely, our contributions are: i) We
prove that the model checking problem for epistemic properties over SNMs is decidable;
ii) We prove that a number of properties of knowledge that are sound w.r.t. Kripke
models are also sound w.r.t. SNMs; iii) We give a satisfaction-preserving encoding of
SNMs into canonical Kripke models, and we also characterise which Kripke models may
be translated into SNMs; iv) We show that, for SNMs, the model checking problem is
cheaper than the one based on standard Kripke models. Finally, we have developed a
proof-of-concept implementation of the model-checking algorithm for SNMs.

102 Chapter IV

Model Checking Social Network Models 103

IV.1 Introduction
Social networks services (or simply social networks) are one of the most popular services
on the Internet nowadays. One of the main concerns in social networks is that of privacy:
most users are not in full control over what they share, and it is not uncommon that
private and personal data is leaked to an unintended audience [51]. These concerns
arise because users cannot determine (in a precise manner) who knows their personal
information. One solution is to provide users with more fine grained control over who
knows their information. Epistemic logic or “the logic of knowledge” [29] offers great
precision and granularity for modelling and reasoning about the knowledge of the (users
or agents) in a system.

In [71] we introduced PPF , a formalism based on epistemic logic to specify privacy
policies in social networks, and to enable a formal assessment on whether these policies
are preserved. PPF consists of: i) A generic model for social networks (SNMs); ii) A
knowledge-based logic (KBL) to reason about the social network and privacy policies;
iii) A formal language (PPL) to describe privacy policies (based on KBL). In [67],
PPF was further extended by providing agents with a deductive engine to perform
knowledge inferences, and including an operational semantics to model the dynamics of
social networks.

PPF has been specifically designed for privacy policies for real social networks, and
that is why the language PPL and the underlying logic KBL are interpreted over SNMs
and not over Kripke models (possible-worlds semantics), which is the “standard” way
to give semantics to epistemic logic. In Kripke models the uncertainty of the agents
is modelled using an accessibility relation. This relation connects all the worlds in the
model that an agent considers possible. If a formula is true in all of them, then the
agent knows it. This does not correspond to the way users in real world social networks
acquire and reason about information. Typically, when a user joins a social network,
she knows none or a few facts about it. The system might suggest some friends that
are retrieved from the user’s phone contacts. As the user makes new friends and they
share information, her knowledge starts to grow, and later from this set of accumulated
knowledge users may derive new facts.

There are two main advantages in PPF ’s design (as opposed to standard Kripke
models):

1. It preserves the original structure of real social networks. The models
in PPF (SNMs) consist of the social graph [27] and a knowledge base per user.
The topology of the social graph provides information regarding the relationships
between users (e.g., friends, colleagues,...). The knowledge base gives semantics to
the modalityKiφ (user i knows φ). Knowledge bases are not a new invention, they

104 Chapter IV

are just an instance of the syntactic approach to modelling knowledge [40]. This
structure is also important from the enforcement point of view since it facilitates
the integration of the framework with the target social network.

2. Checking whether a user knows something must be as efficient as pos-
sible. The privacy policies that users can specify in PPF talk about knowledge,
e.g., “Only my friends can know my location” or “Only my family can know that I
am going to my father’s birthday party”. Therefore, the enforcement of PPF pri-
vacy policies mainly depends on how efficiently these checks are performed. Social
networks have millions of users, who disclose tons of information per second. As a
consequence, a slow enforcement mechanism would not work in practice. By split-
ting the users’ knowledge in different knowledge bases, the complexity of checking
whether a user knows a piece of information can be significantly reduced. In Sec-
tion IV.6 we study the improvement in complexity of having separated knowledge
bases as opposed to standard Kripke semantics.

The properties of knowledge related to human reasoning, present in Kripke models,
have been studied for decades and they are well-understood [29]. On the other hand, the
properties of knowledge in SNMs have not been throughly studied. Few questions need
to be answered: i) What is the relation between SNMs and Kripke models? ii) Does
this slightly different representation of knowledge preserve the same properties? iii) Is
it possible to determine whether an epistemic formula written in KBL is satisfied on a
given SNM?1 In this paper we study in depth the answer to these questions providing
evidence that PPF not only offers advantages from the practical point of view, but
also models knowledge as traditionally understood and accepted in the epistemic logic
literature.

More concretely, our contributions are: i) A proof that model checking KBL formu-
lae over SNMs is decidable, the algorithm being an implementation of the satisfaction
relation for KBL (Section IV.3); ii) A logical characterisation of a number of proper-
ties of knowledge for SNMs including common and distributed knowledge (Section IV.4).
iii) A translation from SNMs into canonical Kripke models, together with a proof that
satisfaction is preserved (Section IV.5); we also show that it is always possible to re-
construct the original SNM from the canonical Kripke model, by considering the state
associated with the characteristic formulae (Section IV.5.1); iv) A formal comparison of
the complexity of the model checking problem for SNMs and for Kripke models where
we show that the former is more efficient (Section IV.6). Additionally, we provide a
proof-of-concept implementation of the model-checking algorithm.2

1Answering this question will also solve the model checking problem for privacy policies written in
PPL, as checking conformance of PPL is reduced to checking satisfaction of a KBL formula.

2https://github.com/raulpardo/kbl-model-checker

https://github.com/raulpardo/kbl-model-checker

Model Checking Social Network Models 105

Appendices are for reviewing purpose only and should not be considered as part of
the paper (it contains the proofs for all theorems and lemmas).

IV.2 Preliminaries
Here we briefly recall First-Order Epistemic Logic [29], social network models and the
logic KBL [67].

IV.2.1 First-Order Epistemic Logic
We start with a set T , consisting of relation symbols (p), function symbols (f) and
constants symbols (c). Hereafter we will refer to T as the vocabulary. Each relation and
function symbol has an implicit arity which corresponds to the number of arguments
it takes. Function and relation symbols are interpreted over elements of a domain. We
assume an infinite supply of variables, which we write as x, y and so on. We can form
terms using constants, variables, and function symbols. Formally, a term t is recursively
defined as follows: t ::= c | x | f(#»

t), where #»
t represents a list of terms t1, . . . , tk. An

atomic formula is of the form p(
#»
t) where p is a relation symbol. Let Ag be a set of

agents, i ∈ Ag and G ⊆ Ag, the syntax of First-Order Epistemic Logic (FOEL), denoted
as L, is recursively defined as follows [29]:

φ::=p(#»
t) | φ ∧ φ | ¬φ | ∀x.φ | Kiφ

The remaining epistemic modalities are defined as SGφ ≜
∨
i∈GKiφ and EGφ ≜

∧
i∈G φ.

The intuitive meaning of the modalities is the following: Kiφ, agent i knows φ; EGφ, ev-
eryone in the group G knows φ; SGφ, someone in the group G knows φ. The semantics
of FOEL formulae is given using relational Kripke models. In what follows we omit
relational and write Kripke models.

Definition 1 ([29]). A relational Kripke Model is a tuple of the form ⟨S, π, {Ki}i∈Ag⟩,
where:

• S is a non-empty set of states (or worlds).
• π : S → A is a function that associates to each world a relation structure for a

fixed vocabulary T . As usual, A consists of a domain Do, an assignment of a k-
ary relation PA ⊆ Dko for each relation symbol, an assignment of a k-ary function
fA : Dko → Do for each function symbol and an assignment of a member cA of the
domain for each constant symbol.

• {Ki}i∈Ag where Ki ⊆ S × S is an accessibility relation between states.

106 Chapter IV

p(a)

s0

p(a)

s1 s2

a b

Figure IV.1: Relational Kripke structure

(M, s) ⊨ p(t1, . . . , tk) iff (t1, . . . , tk) ∈ Pπ(s)

(M, s) ⊨ ¬φ iff (M, s) ̸⊨ φ
(M, s) ⊨ φ1 ∧ φ2 iff (M, s) ⊨ φ1 and (M, s) ⊨ φ2

(M, s) ⊨ ∀x.φ iff for all v ∈ dom(π(s)), (M, s) ⊨ φ[v/x]
(M, s) ⊨ Kiφ iff (M, t) ⊨ φ for all t such that (s, t) ∈ Ki

Table IV.1: Satisfaction relation over Kripke models

Example 1. Let us consider a Kripke structure consisting of agents a and b, states
s0, s1 and s2, a predicate p with arity 1 and relations Ka = {(s0, s1), (s1, s0)} and
Kb = {(s1, s2), (s2, s1)}. We assume here that all relational structures π(sn) have a
common domain Do = {a, b}, i.e., Ag. Moreover, a ∈ Pπ(s0) and a ∈ Pπ(s1). Fig. IV.1
shows a graphical representation of the described model.

Usually free variables and terms are interpreted using a valuation function, which
is parametrised with a relational structure depending of the state of the Kripke model
in which the formula is evaluated. For simplicity, in this paper we will assume that
formulae in L do not contain free variables (i.e., all variables are quantified) and the
interpretation of functions and constants is the same independently of the state where
they are evaluated. Thus, we assume that terms are implicitly interpreted and we do
not include the valuation function as a parameter in the satisfaction relation below.

Definition 2 ([29]). Given a non-empty set of agents Ag, a relational Kripke model M ,
a state s ∈M , agents i, j, u ∈ Ag and a finite set of agents G ⊆ Ag , we define what it
means for φ ∈ L to be satisfied by (M, s), written (M, s) ⊨ φ, as shown in Table IV.1.

We say that a formula φ is valid in a Kripke model M , and we write M ⊨ φ, if
∀s ∈ M (M, s) ⊨ φ. Moreover, we say that φ is valid, denoted as ⊨ φ, if for all Kripke
models M it holds M ⊨ φ.

Example 2. LetM be the model presented in Fig. IV.1. It holds that (M, s0) ⊨ Kap(a),
since p(a) holds in s0 and in all the states accessible for a from s0 (only s1). It also
holds that (M, s1) ⊨ ¬Kbp(a), since in one of the states that b considers possible p(a) is
not true. In particular, (M, s2) ⊨ ¬p(a).

Model Checking Social Network Models 107

IV.2.2 KBL and Social Network Models
KBL is a knowledge-based logic for social networks. It contains all the knowledge modal-
ities presented in L, and additionally, it includes two special types of predicates. The
connection and action predicates. Connection predicates represent the “social” connec-
tions between users. For instance, friends, colleagues, family, co-workers, and so forth.
Action predicates model the permitted actions a user may execute. For example, Alice
can send a friend request to Bob or Alice can join events created by Bob. Note that
action predicates are not deontic modalities. Hereafter we use C and Σ to denote sets of
indexes for connections and permissions, respectively. As before the set Ag represents
a set of agents in the system.

Definition 3. Given i, j ∈ Ag, a set of predicate symbols P such that an(i, j), cm(i, j),
p(

#»
t) ∈ P where m ∈ C and n ∈ Σ, and G ⊆ Ag, the syntax of the knowledge-based

logic KBL is inductively defined as:

φ ::= cm(i, j) | an(i, j) | p(
#»
t) | φ ∧ φ | ¬φ | ∀x.φ | Kiφ

As before, the remaining epistemic modalities are defined as SGφ ≜
∨
i∈GKiφ and

EGφ ≜
∧
i∈G φ.

Terms and atomic formulae are defined as for L. FKBL denotes the set of well-formed
formulae of KBL (category φ of Def. 3).

Social networks are usually modelled as graphs where nodes represent the users (or
agents), and edges represent different relationships among agents or any other social net-
work specific information [27]. These graphs are known as social graphs. Here we enrich
social graphs with information about the agents knowledge, permissions, connections
and privacy policies as defined below.

Definition 4 (Social Network Model). Given a set of KBL formulae F , a set of privacy
policies Π, and a finite set of agents Ag ⊆ AU from a universe AU , a social network
model (SNM) is a social graph of the form ⟨Ag,A,KB, π⟩, where

• Ag is a nonempty finite set of nodes representing the agents of the social network.
• A is a first-order relational structure for the fixed vocabulary of the SNM, which

as before, consists of a finite domain Do3, an assignment of a k-ary relation
PA ⊆ DA

o for each predicate symbol, an assignment of a k-ary fA : Dko → Do
3For the sake of clarity in definitions and proofs and w.l.o.g. we have only considered a single finite

domain in the formal definition. However, in the rest of the paper we will assume that we have a finite
set of finite domains. For instance, we can have Do consisting of the domain of agents, indexes for
posts, indexes for pictures, etc. All the results also hold in SNMs consisting of multiple domains as we
consider a finite number of finite domains.

108 Chapter IV

post(Bob, pub, 1)
∀t.(post(Bob, pub, t) =⇒ loc(Bob, pub, t))

Alice

Bob

post(Bob, library, 2)

Charlie

Friend

Blocked

friendRequest

Figure IV.2: Example of Social Network Model

for each function symbol and assignment of a member cA of the domain for each
constant symbol.

• KB : Ag → 2F is a function that returns a finite set of accumulated knowledge for
each agent, stored in what we call the knowledge base of the agent. We write KBi
to denote KB(i).

• π : Ag → 2Π is a function that returns a finite set of privacy policies for each
agent. We write πi to denote π(i).

The shape of the relational structure A depends on the concrete the social network.
Connections and permission actions between agents, i.e., edges of the social graph, are
represented as families of binary relations, {Ci}i∈C ⊆ 2Ag×Ag and {Ai}i∈Σ ⊆ 2Ag×Ag

over the domain of agents. Sometimes, we write an atomic formula, e.g. friends(a, b)
to denote that the elements a, b ∈ Ag belong to a binary relation, friends, defined over
pairs of agents as expected. SN denotes the universe of all possible SNMs.

The knowledge base KBi of each agent i contains the explicit knowledge that the
agent has. Besides this explicit knowledge, agents also know anything that can be
derived from formulae in their knowledge bases (using the KD4 axiomatisation of epis-
temic logic [29]).

Definition 5. A derivation of a formula φ ∈ FKBL, is a finite sequence of formulae
φ1, . . . , φn = φ where each φi, for 1 ≤ i ≤ n, is either an instance of the axioms or
the conclusion of one of the derivation rules of the KD4 axiomatisation which premises
have already been derived, i.e., it appears as φj with j < i.

Given a set of formulae Γ ∈ 2FKBL , we write Γ ⊢ φ to denote that φ can be derived
from Γ.

Model Checking Social Network Models 109

Additionally, we impose two assumptions in users’ knowledge bases:
i) φ and ¬φ cannot be derivable in the same KBi. It prevents users from having

inconsistent knowledge.
ii) If φ is in i’s knowledge base, Kiφ is also there. In this way we make users aware

of their knowledge.
These assumptions are formalised as the following properties:

Definition 6 (Knowledge Consistency). For all i ∈ Ag and formulae φ ∈ FKBL,
if KBi ⊢ φ then KBi ̸⊢ ¬φ.

Enforcing knowledge consistency is straightforward. Before adding any formula φ
to KBi we check that KBi ∪ {φ} ̸⊢ ¬φ.

Definition 7 (Self-Awareness). For all i ∈ Ag and formulae φ ∈ FKBL, if KBi ⊢
φ then KBi ⊢ Kiφ.

Remark 1. Self-awareness is not equivalent to the necessitation rule in KD4. Neces-
sitation states that if a φ is provable from no assumptions then Kiφ is provable from

no assumptions as well [29]. That is,
⊨ φ

⊨ Kiφ
. It requires φ to be a tautology. On the

other hand, self-awareness states that if φ is derivable from i’s knowledge, then Kiφ is
also derivable. For example, φ ∨ ¬φ is provable from no assumptions. Therefore, from
axiom A1 it is derivable KBi ⊢ φ ∨ ¬φ for all KBi. Consequently, by necessitation
it also holds that KBi ⊢ Kjφ ∨ ¬φ for all KBi and j ∈ Ag. However, consider now
a predicate p(#»

t) which is not derivable from no assumptions. It does not hold that
KBi ⊢ p(

#»
t) for all KBi. There is no axiom which includes p(#»

t) in the set of derivations
of ⊢. Nevertheless, self-awareness says that if KBi ⊢ p(

#»
t) then KBi ⊢ Kip(

#»
t). Note

that, unlikely necessitation, we use the same agent i in KBi and Kip(
#»
t).

Example 3. Let SN be an SNM consisting of three agents Alice, Bob and Charlie,
Ag = {Alice,Bob,Charlie}; the friend request action, Σ = {friendRequest}; and the
connections Friend and Blocked, C = {Friend,Blocked}. Here, we define Do to be a
finite set of timestamps.

Fig. VI.1 shows a graphical representation of SN. In this model the dashed arrows
represent connections. Note that the Friend connection is bidirectional, i.e., Alice is
friend with Bob and vice versa. On the other hand, it is also possible to represent
unidirectional connections, as Blocked; in SN Bob has blocked Charlie. Permissions
are represented using a dotted arrow. In this example, Charlie is able to send a friend
request to Alice.

The predicates inside each node represent the agents’ knowledge, e.g., Alice has
post(Bob, pub, 1) in her knowledge base, meaning that she knows that Bob posted at

110 Chapter IV

SN ⊨ p(#»
t) iff p(

#»
t) ∈ KBe

SN ⊨ cm(i, j) iff (i, j) ∈ Cm
SN ⊨ an(i, j) iff (i, j) ∈ An
SN ⊨ ¬φ iff SN ̸⊨ φ
SN ⊨ φ ∧ ψ iff SN ⊨ φ and SN ⊨ ψ
SN ⊨ ∀x.φ iff for all v ∈ Do, SN ⊨ φ[v/x]
SN ⊨ Kiφ iff KBi ⊢ φ

Table IV.2: KBL satisfaction relation

time 1 that he was in a pub. Similarly, Charlie’s knowledge base contains the predicate
post(Bob, library, 2) meaning that at time 2 Bob posted that he was in the library. Agents’
nodes can also contain more complex KBL formulae that may increase their knowledge.
For instance, Alice knows loc(Bob, pub, 1) implicitly. Alice can in fact derive it by
Modus Ponens, from post(Alice, pub, 1) and ∀t.(post(Alice, pub, t) =⇒ loc(Bob, pub, t)).
The variable t ranges over Do, which, as mentioned earlier, consists in a finite set of
timestamps. Being able to derive loc(Bob, pub, 1) means that Alice knows that Bob’s
location at time 1 was a pub.

The satisfaction relation for KBL formulae, interpreted over SNMs, is defined as
follows.

Definition 8. Given an SNM SN = ⟨Ag,A,KB, π⟩, agents i, j ∈ Ag, formulae φ,ψ ∈
FKBL, a finite set of agents G ⊆ Ag, m ∈ C and n ∈ Σ, the satisfaction relation
⊨ ⊆ SN ×KBL is defined in Table IV.2.

The intuition behind the semantic definition of the knowledge modality is different
in KBL from that of epistemic logic. As shown in Table IV.1, the accessibility relation
in Kripke models captures the uncertainty of the agents. It models all the states that
an agent consider possible and knowledge is acquired when a given formula is true in
all those states. In SNMs, knowledge is explicitly present in the knowledge bases of the
agents, hence modelling what the agents know rather than what they consider possible.
A given formula is known by an agent if it is present in her knowledge base or if she
can derive it from her knowledge. We use a special agent called environment (or simply
e) which defines the truth of atomic formulae of the type p(#»

t). The environment’s
knowledge base (KBe) contains all predicates which are true in the real world. For
instance, location(Alice,Sweden) is inKBe only if Alice’s location is Sweden or, similarly,
only if Bob’s age is 20 the predicate age(Bob, 20) is in KBe.

Example 4. Let SN be the SNM in Fig. VI.1. As described in Example 1, Alice knows
Bob posted that at time 1 he was in a pub, meaning that SN ⊨ KAlicepost(Bob, pub, 1)

Model Checking Social Network Models 111

holds. Indeed, it holds since post(Bob, pub, 1) is in the knowledge base of Alice, i.e.,
post(Bob, pub, 1) ∈ KBAlice and therefore it can be derived KBAlice ⊢ post(Bob, pub, 1)
(1). Though not explicitly stated, it is possible for Alice to derive that Bob’s lo-
cation at time 1 was a pub, meaning that SN ⊨ KAliceloc(Bob, pub, 1) (2) should
hold. Following the semantics of Ki in Table IV.2, the previous formula is true
iff KBAlice ⊢ loc(Bob, pub, 1). Fig. VI.1 shows that KBAlice contains the formula
∀t.(post(Bob, pub, t) =⇒ loc(Bob, pub, t)) (3)—where t is a timestamp —therefore
the deductive engine derives post(Bob, pub, 1) =⇒ loc(Bob, pub, 1) (4). From (1) and
(4), by modus ponens we can derive loc(Bob, pub, 1), i.e., KBAlice ⊢ loc(Bob, pub, 1),
hence (2) holds.

IV.3 Model checking SNMs
In this section we present a model checking algorithm that directly implements the
semantics of KBL in Table IV.2, and we show that model checking is decidable under
the following assumptions:

Assumption 1. All domains are finite.

Assumption 2. All functions are computable.

These assumptions are present in all real social networks. Domains in SNMs might
be, the set of users, posts, pictures, likes, tags and so on. In practice at any moment
in time there is a finite amount of any of these elements. Consequently, when having
a universal quantification over a domain it is reasonable to consider only the finite set
of elements in the domain at that concrete moment in time. Furthermore, we assume
that functions in KBL terms must be computable. As mentioned in the introduction,
KBL is a logic embedded in a framework to express privacy policies. The framework
includes the notion of instantiation where all the elements of SNMs are instantiated for a
concrete social network. For instance, in [71] we presented the instantiations of Facebook
and Twitter. In these instantiations functions were used to retreive information, e.g.,
followers(u) which returns all the followers of the user or friends(u) which returns all the
friends of u. Another type of functions could be weather(London) or location(u), which
return the current weather in London and u’s current location, respectively. Therefore,
computable functions are enough for the practical use of the logic.

Theorem 1. Let SN be an SNM and φ ∈ FKBL be a formula. Determining whether
SN ⊨ φ is decidable.

112 Chapter IV

Proof. We show decidability of the model checking problem for KBL by presenting an
algorithm which implements the semantics of Table IV.2,

First, we expand the universal quantifiers in φ by inductively transforming each
subformula ∀x.φ′ into a conjunction with one conjunct φ′[v/x] for each element v of the
domain Do. Given that the domain is finite (see Assumption 1), it always terminates
and results in a quantifier free formula. Secondly, we compute all functions and replace
all constants with an element of the domain according to the assignment in A. From
Assumption 2, we can deduce that this step always terminates. After this step we are
left with a quantifier free formula without functions or constant symbols. Finally, we
inductively show that all the elements of the formula (see Def. 3) can be computed.

• Checking cm(i, j) and an(i, j) can be performed in constant time, simply by check-
ing (i, j) ∈ Cm or (i, j) ∈ An, respectively.

• Checking p(#»
t) requires the query p(#»

t) ∈ KBe to the environment’s knowledge
base. It can be performed in constant time.

• ¬φ and φ1 ∧ φ2 can be done in constant time, using the induction hypothesis.
• Kiφ requires a query to the epistemic engine to determine KBi ⊢ φ. Solving the

previous query is a decidable problem [29].
The algorithm goes recursively from the top most element of φ to the bottom.

In Section IV.6 we study the complexity of this algorithm and compare it to that
of model checking in traditional Kripke models. Nevertheless, in order to provide a fair
comparison, we first show that the same set of properties of knowledge that are sound
w.r.t. Kripke models are also sound w.r.t. SNMs.

IV.4 Properties of Knowledge in SNMs
Here we explore properties of knowledge in SNMs. In particular, we consider the axioms
of some of the standard axiomatisations for epistemic logic, and prove that such axioms
are sound with respect to SNMs.

In [29] Fagin et al. show which properties of knowledge are sound w.r.t. Kripke
models depending on the type of accessibility relation of the model. For instance, the
following axiom is sound w.r.t. the set of Kripke models where the accessibility relation
is reflexive: (A3) Kiφ =⇒ φ.

These properties of knowledge comprise the different axiomatisations of epistemic
logic. In SNMs the properties of knowledge will depend on the axiomatisation from
epistemic logic [29] that we choose for ⊢. As we described in Def. 6, ⊢ includes all the
axioms and derivation rules from KD4.

Model Checking Social Network Models 113

In epistemic logic one can talk about knowledge or belief depending on the properties
(or axiomatisations) that are sound w.r.t. a particular set of Kripke models. Axiom
A3 is commonly called Knowledge axiom. It means that the facts agents know are
true. When this axiom is not present, the “knowledge” of the agents is regarded as
belief. As you might have noticed, in SNMs the truth of the facts that the agents
know is not linked to whether they are true or not. For example, imagine that Alice
knows that Bob and Charlie are friends, i.e., KAlicefriend(Bob,Charlie), which is true
iff KBAlice ⊢ friend(Bob,Charlie). This is not connected to the actual truth of the
predicate friend(Bob,Charlie), which holds iff (Bob,Charlie) ∈ CFriend. When the
knowledge axiom is not present, some philosophers argue that it is required that the
beliefs of the agents are consistent. This is captured by the following axiom, where ⊥
represents falsum: (D) ¬Ki⊥.

In Kripke models, axiom D is present when the accessibility relation is serial [29].
In SNMs, we assume agents’ knowledge bases to be consistent (see Def. 6). Therefore,
⊥ cannot be derived.

Lemma 1. Axiom D is sound with respect to SNMs.

As we mentioned in the introduction, KBL and SNMs were developed in the context
of a privacy policy framework for social networks [71, 67]. In privacy policies it is more
natural to write “Alice cannot know my location” than “Alice cannot belief my location”.
Because of this, we chose to talk about knowledge, even though we are dealing with an
axiomatisation for belief.

The most basic set of properties for Kripke models, i.e., the set of properties that
are sound w.r.t. Kripke models with no conditions in their accessibility relation, is the
K axiomatisation [29]. It consists of two axioms and two inference rules. Given φ ∈ L
and i ∈ Ag,
A1. All (instances of) first-order tautologies,
A2. (Kiφ ∧Ki(φ =⇒ ψ)) =⇒ Kiψ,
R1. From φ and φ =⇒ ψ infer ψ,
R2. From φ infer Kiφ where φ must be provable from no assumptions.

Lemma 2. K is sound with respect to SNMs.

The axioms and inferences rules of K, together with axiom D comprises the axiom
system KD. Nevertheless, there exist two more axioms that are normally present in
knowledge and belief axiomatisations, the so called positive introspection (A4) and neg-
ative introspection (A5) [29]. The former expresses that agents in the system are aware
of their knowledge, the latter means that agents know everything that they do not know.
Given φ ∈ L and i ∈ Ag

114 Chapter IV

A4. Kiφ =⇒ KiKiφ,
A5. ¬Kiφ =⇒ Ki¬Kiφ.

Lemma 3. Axiom A4 is sound with respect to SNMs.

Lemma 4. Axiom A5 is not sound with respect to SNMs.

A4 follows from our assumption that agents are self-aware of their knowledge (see Def.7).
On the other hand, A5 does not follow given the current set of assumptions in knowledge
bases. An agent’s knowledge base does not contain any knowledge regarding what she
does not know, unless it is explicitly inserted.

The axiomatisation K together with axioms D and A4 forms the so-called KD4 ax-
iomatisation. We thus have the following result for SNMs.

Theorem 2. KD4 is sound with respect to SNMs.

Common Knowledge

Here we introduce the notion of common knowledge, which we represent using the
modality CG where G is a group of agents. A fact becomes common knowledge when
everybody knows it, and also, everyone knows that everyone knows it, and so forth.
This is a useful concept in the social network setting. Consider the effect of publishing
a post p(#»

t) in a social network. After posting, the owner of the post and the audience
will know the post, E{owner}∪audience p(

#»
t). Moreover, the owner also will know that

everyone who was included in the audience will know the post, KownerEaudience p(
#»
t).

But even more, each of the users in the audience will know that each other knows the
post, i.e. E{owner}∪audienceE{owner}∪audience p(

#»
t) and so on. The traditional definition

of common knowledge [29] over Kripke models accurately captures the described effect.
Given a Kripke model M , a state s ∈ M , a formula φ ∈ L and a set of agents G,
common knowledge is defined as follows:

(M, s) ⊨ CGφ iff (M, s) ⊨ EkGφ for k = 1 . . .

where E0
Gφ = φ and Ek+1

G φ = EGφE
k
Gφ. The definition of common knowledge for

SNMs is analogous to the one above.

Definition 9. Given an SNM SN, a formula φ ∈ FKBL and a set of agents G, common
knowledge is defined as follows:

SN ⊨ CGφ iff SN ⊨ EkGφ for k = 1 . . .

Model Checking Social Network Models 115

Given formulae φ,ψ ∈ L, the set G ⊆ Ag and i ∈ Ag, the following axiomatisation
characterises common knowledge [29]:
C1. EGφ⇐⇒

∧
i∈GKiφ,

C2. CGφ⇐⇒ EG(φ ∧ CGφ),
RC1. From φ =⇒ EG(ψ ∧ φ) infer φ =⇒ CGψ where φ =⇒ EG(ψ ∧ φ) must be
provable from no assumptions.

Lemma 5. The axioms C1 and C2, and the rule RC1 are sound w.r.t. SNMs.

Distributed Knowledge

In this section we introduce the distributed knowledge operator, represented by the
modality DG. A fact becomes distributed knowledge in the group of agents G when it
is known by combining the knowledge of all individual agents. It can be seen as a wise
agent. In Kripke models, distributed knowledge is defined by removing possible states,
i.e., removing uncertainty. Formally,

(M, s) ⊨ DGφ iff (M, t) ⊨ φ for all t such that (s, t) ∈
∩
i∈G

Ki.

We define distributed knowledge as the union of all the explicit knowledge that all the
agents in G have and everything that can be derived from it.

Definition 10 (Distributed knowledge). Given an SNM SN, a formula φ ∈ FKBL and
a set of agents G, distributed knowledge is defined as follows:

SN ⊨ DGφ iff
∪
i∈G

KBi ⊢ φ.

The following axioms characterise distributed knowledge [29]:
D1. D{i}φ⇐⇒ Kiφ, i = 1, . . . , n,
D2. DGφ =⇒ DG′(φ) if G ⊆ G′,
DA2 and DA4. Axioms A2 and A4 of KD4, Ki with DG in each axiom.

Note that axiom D is not required because we work with a belief axiomatisation [29].
Therefore, it is possible for a group of agents to have inconsistent distributed beliefs. In
what follows, we show that this axiomatisation for Kripke models is sound with respect
to SNMs as well.

Lemma 6. Axioms D1 and D2, together with the axioms A2 and A4 of the KD4-
axiomatisation (replacing the modality Ki with the modality DG) are sound w.r.t. SNMs.

116 Chapter IV

IV.5 Translation of SNMs into Kripke Models

In this section, we show that SNMs can be encoded into Kripke models. Our proof is
constructive, starting from an SNM we give a procedure to build a canonical Kripke
model, and we prove that satisfaction is preserved when interpreting KBL formulae as
epistemic logic formulae.

For epistemic logic, Fagin et al. show that it is possible to construct a canonical
Kripke model which satisfies a given formula φ [29], provided that φ is consistent with
respect to some of the axiomatisations of knowledge. A formula φ is KD4-consistent
if ¬φ cannot be derived. A set of formulae is KD4-consistent if the conjunction of all
the formulae in the set is KD4-consistent. We say that a set of formulae Φ is maximal
KD4-consistent with respect to the language L, if Φ is KD4-consistent and for all φ in
L but not in Φ, the set Φ∪{φ} is not KD4-consistent. In what follows, we describe the
procedure of how to construct a canonical Kripke model for a KD4-consistent formula.
We will follow a similar approach when translating SNMs into Kripke models.

Definition 11 (Canonical Kripke model for KD4[29]). Consider a KD4-consistent
formula φ. Let Sub(φ) be the set of all subformulae of φ. We define Sub+(φ) to be the set
of all subformulae and their negations, i.e. Sub+(φ) = Sub(φ)∪{¬ψ | ψ ∈ Sub(φ)}. We
also define Con(φ) to be the set of maximal KD4-consistent subsets of Sub+(φ). Given
a set of formulae Θ ⊆ L, we define Θ/Ki = {φ | Kiφ ∈ Θ}. The canonical Kripke model
for φ is defined as follows: Mφ = ⟨Sφ, π, {Ki}i∈Ag⟩ where Sφ = {sΘ | Θ ∈ Con(φ)},
Ki = {(sΘ, sΨ) | Θ/Ki ⊆ Ψ/Ki, Θ/Ki ⊆ Ψ} and

π(sΘ)(p(t1, . . . , tk)) =

{
true if p(t1, . . . , tk) ∈ Θ

false if p(t1, . . . , tk) ̸∈ Θ

Fagin et al. show that φ is satisfiable in the resulting canonical Kripke model [29,
Theorem 3.2.4]. The set of Kripke models that are sound and complete with respect to
KD4 are the ones with a serial and transitive accessibility relation. The accessibility
relation of the previous canonical Kripke model is, as shown in [29, Theorem 3.2.4],
serial and transitive. We denote the set of Kripke models with the previous type of
accessibility relation as Mlt.

The canonical Kripke model will have at most 2|φ| states, as shown in [29, Theorem
3.2.4] where |φ| is the length of the formula φ. Even though it is finite, this approach of
constructing a Kripke model can lead to an exponential growth of the size of the model.
For example, if we assume that the knowledge of the agents increases monotonically,
i.e., agents do not forget any knowledge they have previously obtained, then the size
of φ will have a lower bound, from which its size will only grow, and consequently, the

Model Checking Social Network Models 117

size of the corresponding canonical Kripke model. In what follows, we define a function
which takes an SNM and converts it into the corresponding canonical Kripke model.

First we describe how to construct a set containing all the true formulae in an SNM,
called the characteristic set of the social network.

Definition 12. The characteristic set of an SNM SN, denoted as ΦSN, is constructed as
follows: ΦSN = {p(#»

t) | p(#»
t) ∈ KBe} ∪ {Kiφ | φ ∈ KBi} ∪ {c(i, j) | (i, j) ∈ Cc, c ∈ C}

∪ {a(i, j) | (i, j) ∈ Aa, a ∈ Σ}.

Moreover, we define the characteristic formula of an SNM.

Definition 13. Given a characteristic set, ΦSN, of an SNM SN, its characteristic
formula, denoted as φSN, is defined as φSN =

∧
ψ∈ΦSN

ψ.

We will use the characteristic formula of an SNM to create the corresponding Kripke
model, therefore we must show that this formula is KD4-consistent.

Lemma 7. For all SN ∈ SN , φSN is KD4-consistent.

We are now ready to provide our translation from SNMs into canonical Kripke models.

Definition 14 (Kripke transformation function). Let KT : SN → Mlt be a function
which takes an SNM and converts it to the corresponding Kripke model as follows. Given
an SN ∈ SN , KT (SN) is defined as follows: 1) Construct ΦSN as defined in Def. 12;
2) Construct φSN as defined in Def. 13; 3) Return the resulting canonical Kripke model
of φSN as defined in Def. 11.

We thus have our main theorem.

Theorem 3. If a formula φ is satisfied in an SNM SN then φ is satisfied in the Kripke
model KT (SN).

IV.5.1 Translation of Kripke Models into SNMs
Note that, in general, it is not possible to translate arbitrary Kripke models into SNMs.
One of the reasons is that in Kripke models there exists only one type of predicate,
which is always interpreted in the same way, whereas in SNMs, there are three types
of predicates. We cannot even translate back canonical Kripke models constructed
using KT . To see why let us consider a canonical Kripke model with the following
characteristic set of formulae {KAliceloc(Bob, library), friend(Alice,Bob)}. We know
that the predicate loc(Bob, library) belongs to Alice’s knowledge base, since it is under
the scope of a knowledge modality. However, we cannot know the type of the predicate

118 Chapter IV

friend(Alice,Bob), it could be part of a connection relation, action relation or simply
be a regular predicate which should appear in the environment’s knowledge base.

That said, we show here that it is in fact always possible to reconstruct the original
SNM from the canonical Kripke model, if we slightly modify our translation function
KT . Let ΦmSN be a marked characteristic set, which is a characteristic set as defined
in Def. 12, but having the predicates annotated so that their type can be syntactically
identified. For example, if the predicate above friend(Alice,Bob) is a connection pred-
icate, it would be converted to co_friend(Alice,Bob). We can now define KT m to be
a Kripke transformation function as in Def. 14, except for the input characteristic set,
which is replaced by ΦmSN. Given that we can uniquely identify the type of the predicates
it is trivial to define a function that takes a Kripke model constructed using KT m and
returns the equivalent SNM. The function proceeds as follows: firstly, it searches for
all the agents present in all formulae and subformulae in ΦmSN and creates one node
per agent; secondly, it puts regular predicates in the environment’s knowledge base;
thirdly it creates relations between agents for each connection and permission predi-
cate; finally, for all formulae of the form Kiφ it includes φ in i’s knowledge base. See
Appendix IV.A.4 for the formal definitions of ΦmSN, KT m and the SNM construction).

We also show that satisfaction is preserved between a marked canonical Kripke
model and its original SNM when formulae are evaluated in the state corresponding to
the marked characteristic set (sΦm

SN
).

Theorem 4. If a formula φ is satisfied in the state sΦm
SN

of a Kripke model KT m(SN)
then φ is satisfied in the SNM SN.

IV.6 Model checking complexity
In [29], Fagin et al. prove that the complexity of the model checking problem for
KD4 (without common and distributed knowledge) is PSPACE-complete for n agents
where n > 1 and NP-complete for one agent. They also prove that for a model
M = (S, π,K1, . . . ,Kn) “There is an algorithm that, given a structure M , a state s
of M and a formula φ ∈ L, determines, in time O(||M || × |φ|), whether (M, s) ⊨ φ”
(see [29, Proposition 3.2.1]) where ||M || is the sum of all the states in S and the number
of pairs in all Ki, and |φ| is the length of the formula defined as usual. This algorithm
is not optimal, but the result is useful to compare the model checking problem in SNMs
and the Kripke models constructed using our translation.

Let MφSN be the model KT (SN) for an SNM SN. The complexity of the model
checking problem of a formula φ in the previous model is O(||MφSN || × |φ|). MφSN has
size at most 2|φSN| (see Section IV.5), therefore it holds ||MφSN || ≤ 2|φSN|. Thus, for

Model Checking Social Network Models 119

simplicity and w.l.o.g. the above may be rewritten as O(2|φSN| × |φ|).

In what follows we study the complexity of the model checking problem in KBL.
The proof of Theorem 1 describes an algorithm to determine whether SN ⊨ φ. We
consider KBL without common and distributed knowledge, since the complexity for
Kripke models mentioned at the beginning of the section also excludes these modalities.
For simplicity in the complexity analysis and w.l.o.g. we only consider quantifier free
formulae which do not contain functions.

Let MKBi be the canonical Kripke model resulting from the conjunction of all for-
mulae in agent’s i knowledge base using our translation, the complexity of the model
checking problem is given by the function checking complexity (cc):

cc(p(#»
t)) = c cc(¬φ) = 1 + cc(φ)

cc(c(i, j)) = c cc(φ1 ∧ φ2) = 1 + cc(φ1) + cc(φ2)

cc(a(i, j)) = c cc(Kiφ) = O(||MKBi
|| × |φ|)

where c is an upper-bound in the cost of checking satisfaction of predicates in the
environment’s knowledge base, connection predicates and action predicates. Negation
and conjunction need one step plus the complexity of checking satisfaction of their
subformulae. Finally, satisfaction of Kiφ depends on checking KBi ⊢ φ, which requires
solving the model checking problem as defined for Kripke models. Therefore it has the
same complexity. Let outerK : FKBL → 2FKBL be a function that takes a KBL formula
and returns the set of subformulae where Ki is the top most operator and it is not
under the scope of a knowledge modality. For example, outerK(Ka(p(s) ∧ Kbq(s)) ∧
p(u) ∧ ¬Kbr(s) ∧Kcu(v)) = {Ka(p(s) ∧Kbq(s)),Kbr(s),Kcu(v)}. Note that Kbq(s) is
not part of the set because it is under the scope of Ka. The complexity of checking
whether a formula φ is satisfiable in an SNM is

O(
∑

Kiφi∈outerK(φ)

(||MKBi
|| × |φi|) +mφ)

where mφ ∈ N. The characteristic formula of an agent’s knowledge base is the con-
junction of all its knowledge, which we denote as φKBi . As before, it holds that
||MKBi

|| < |2φKBi |, which we use again for the complexity of the problem

O(
∑

Kiφi∈outerK(φ)

(2|φKBi
| × |φi|) +mφ).

The intuition is as follows: mφ is the cost of checking predicates, conjunctions and
negations in φ, which we assume to be some constant that depends on the length of

120 Chapter IV

φ. Besides,
∑
Kiφi∈outerK(φ) (2

|φKBi
| × |φi|) is the cost of checking each subformula φi

in the knowledge base of the corresponding agent. In short, we have replaced checking
satisfaction of φ in a complete model of the social network to checking satisfaction of
subformulae of φ in the corresponding knowledge bases of the agents.

Checking the parts of φ that only contain predicates and logical connectives has
very similar complexity in both models. In the canonical Kripke model of an SNM SN,
the state corresponding to the characteristic set (sΦSN) contains all true predicates (see
Def. 11). Similarly, in SNMs it is only needed to check the environment’s knowledge
base, and the connection and action relations (see Table IV.2). In both cases the
complexity is determined by the length of this particular part of φ. Therefore, in
order to compare the complexity of the model checking problem, we only focus on
the parts of the formula that are under the scope of a knowledge modality. Given a
formula φ, let φK be the conjunction of the subformulae starting with a Ki modality
(for any i ∈ Ag), formally, φK ≜

∧
ψ∈outerK(φ) ψ. Thus the complexity of the model

checking problem in Kripke models is reduced to O(2|φSN| × |φK |), and in SNMs it is
O(
∑
Kiφi∈outerK(φ)(2

|φKBi
|×|φi|)). To formally compare the complexity of the problem

in both models we prove the following.

Lemma 8. Given SN ∈ SN and a formula φ the following holds

O(
∑

Kiφi∈outerK(φ)

(2|φKBi
| × |φi|)) < O(2|φSN| × |φK |).

The previous lemma shows that it is always more efficient to check satisfaction of a
formula φ in SNMs. Intuitively, it shows that it is more efficient to construct Kripke
models representing the agents’ knowledge base and locally check the corresponding
subformulae, than constructing the complete Kripke model to check the conjunction of
the mentioned subformulae. The difference in complexity becomes more apparent as less
agents are involved in the knowledge modalities of φ. When an agent is not mentioned
in φ her knowledge base is disregarded. For instance, in the SNM of Fig. VI.1 checking
KCharlieloc(Bob, pub, 1) requires (at most) 24 + 5 = 21 steps where 4 is the size of the
formula in Charlie’s knowledge base and 5 is the size ofKCharlieloc(Bob, pub, 1), whereas
in the corresponding canonical Kripke model it requires (at most) 24+14+12 + 5 =

1073741829 steps where 14 is the size of the conjunction of all the formulae in the
knowledge base of Alice (assuming that the domain of x only has one element), and 12 is
the size of the predicates friend(Alice,Bob), friend(Bob,Alice), blocked(Bob,Charlie)
and friendRequest(Charlie,Alice).

Model Checking Social Network Models 121

IV.7 Related work
The use epistemic logic to model knowledge in social networks is not new. One line of
work consists in using two dimensional modal logic. It relies on Kripke models where the
knowledge of the agents in the social network is encoded using an accessibility relation,
and friendship is represented using a symmetric irreflexive relation between agents [85,
84]. Other epistemic logics include a public (and private) announcement operator to
study diffusion of information in the network [80, 15, 16]. Permission and knowledge has
also been merged in the so called deontic-epistemic logic [3]. For a detailed comparison
among these logics and KBL we refer to the work by Pardo & Schneider [71, 67] and
references therein.

There exist several model checkers for epistemic logic that perform efficiently in
rather large scenarios [33, 25, 54]. However, as shown in this paper, model checking in
the canonical Kripke model constructed from an SNM has higher complexity than in
the SNM.

On the other hand, the model checking algorithm presented in this paper requires
checking whether KBi ⊢ φ. As mentioned in Section IV.2.2, this check can be resolved
by using any of the existing model checkers or SAT solvers for epistemic logic. For
this reason, any improvement in the efficiency of the model checking problem in Kripke
models, will also be improve the performance when checking formulae in the individual
knowledge bases of each agent. In addition, local checks in different knowledge bases can
easily be parallelised. For instance, if there is one process per knowledge base, formulae
regarding different agents’ knowledge can be checked in parallel in the corresponding
knowledge bases. To the best of our knowledge, there are no parallel model checkers
for epistemic logic.

IV.8 Final Discussion
We have proved that the model checking problem in SNMs is decidable. We have
shown the relation between SNMs and Kripke models. Concretely, we have proven
that the belief axiomatisation KD4, which was originally defined for epistemic logic
and naturally models agents’ reasoning, is sound w.r.t. SNMs. We have provided a
translation of SNMs models into canonical Kripke models and proved that satisfaction
of any formula in the SNM is preserved in the corresponding Kripke model. We have
also provided a translation from the canonical Kripke structure (obtained from our
translation from SNMs) into the original SNM. We have proven that all formulae are
satisfied in the state corresponding to the characteristic set of the SNM in the Kripke
model are also satisfied in the original SNM. Finally, we showed the model checking

122 Chapter IV

problem in SNMs using our algorithm is more efficient than using the standard Kripke
semantics.

We conjecture that arbitrary Kripke models (in the frame of models with serial and
transitive relations) can be translated to SNMs. However, to preserve satisfaction the
translation would generate several SNMs from a given Kripke model. Each of these
SNMs would correspond to a state in the Kripke model.

The semantics of the privacy policy language PPL (included in PPF) is given in
terms of the satisfaction relation of KBL, so PPL conformance is reduced to KBL sat-
isfaction. Thanks to our results we may check conformance of PPL policies by using
existing model checkers for epistemic logic.

Model Checking Social Network Models 123

IV.A Appendix

IV.A.1 Axiomatisation KD4
Axioms

(A1) All (instances of) first-order tautologies

(A2) (Kiφ ∧Ki(φ =⇒ ψ)) =⇒ Kiψ

(D) ¬Ki⊥

(A4) Kiφ =⇒ KiKiφ

Derivation rules

(Modus Ponens)
φ φ =⇒ ψ

ψ

(Necessitation)
φ

Kiφ
where φ must be provable from no assumptions.

IV.A.2 Soundness Proofs
Soundness of axiom D

Lemma 1. For all SN ∈ SN and some agent i the following holds:

SN ⊨ ¬Ki⊥.

Proof. Assume by contradiction that SN ⊨ Ki⊥. By ⊨ it follows KBi ⊢ ⊥. In order to
derive ⊥, it must be possible to derive KBi ⊢ φ and KBi ⊢ ¬φ. From Def. 6 it follows
that if KBi ⊢ φ then KBi ̸⊢ ¬φ, thus deriving a contradiction.

Soundness of K-axiomatisation

Lemma 2. For all formulae φ and ψ in FKBL, SN ∈ SN and some agent i the following
holds:

a) A1. All (instances of) first-order tautologies,

b) A2. SN ⊨ (Kiφ ∧Ki(φ =⇒ ψ)) =⇒ Kiψ,

c) R1. From SN ⊨ φ and SN ⊨ φ =⇒ ψ infer SN ⊨ ψ,

d) R2. From ⊨ φ infer ⊨ Kiφ where φ must be provable from no assumptions.

124 Chapter IV

Proof.

a) It follows from the definition of the environment’s knowledge base. KBe is defined
to include all truth, which includes all tautologies of FOEL.

b) It trivially follows since ⊢ includes the rule modus ponens.

c) It follows immediately from the fact that the interpretation of ∧ and ¬ in the defi-
nition of ⊨ is the same to that of in First-Order Logic.

d) Let φ be a formula provable from no assumptions, i.e., ⊨ φ. By axiom A1 it also
holds that KBi ⊢ φ for all KBi. By ⊨ it follows ⊨ Kiφ for all i ∈ Ag as required.

Soundness of axioms A4 and A5

Lemma 3. For all formula φ in FKBL, SN ∈ SN and some agent i the following holds:
A4. SN ⊨ Kiφ =⇒ KiKiφ.

Proof. It follows from Def. 7. Consider an agent i that knows a formula φ, i.e., Kiφ.
Then KBi ⊢ φ. By SA (Def. 7) it follows KBi ⊢ Kiφ. Finally, by ⊨ it follows SN ⊨
KiKiφ as required.

Lemma 4. For all formula φ in FKBL, SN ∈ SN and some agent i the following holds:
A5. SN ̸⊨ ¬Kiφ =⇒ Ki¬Kiφ.

Proof. Here we provide a counter example for A5. Consider an empty knowledge base
KBi = ∅ for an agent i ∈ Ag. Let φ be a formula and SN the SNM consisting of the
knowledge base of i. Since SN ⊨ ¬Kiφ holds iff KBi ̸⊢ φ, and KBi = ∅, it follows (By
Def. ⊨) that SN ⊨ ¬Kiφ. However, SN ⊨ Ki¬Kiφ holds iffKBi ⊢ ¬Kiφ. ∅ ̸⊢ ¬Kiφ since
¬Kiφ is not probable from no assumptions. Therefore, SN ̸⊨ Ki¬Kiφ as required.

Soundness of KD45-axiomatisation

Theorem 2. The KD4 axiomatisation is sound with respect to SNMs.

Proof. It follows from lemmas 1, 2 and 3.

Model Checking Social Network Models 125

Soundness of the axiomatisation of common knowledge

Lemma 5. For all formula φ written in FKBL, SN ∈ SN and some group of agents G
the following holds:

a) C1. SN ⊨ EGφ⇐⇒
∧
i∈GKiφ,

b) C2. SN ⊨ CGφ⇐⇒ EG(φ ∧ CGφ),

c) RC1. From ⊨ φ =⇒ EG(φ∧ψ) infer ⊨ φ =⇒ CGψ where φ =⇒ EG(ψ∧φ) must
be provable from no assumptions.

Proof.

a) It trivally follows from the definition of EG.

b) It follows from the definition of common knowledge. First we prove the implication
from right to left. Assume that SN ⊨ CGφ. It means that KBi ⊢ EGφ ∧ EGEGφ ∧
EGEGEGφ ∧ . . . for all i ∈ G. By distributivity of EG we can derive that KBi ⊢
EG(φ ∧ EGEGφ ∧ EGEGφ ∧ . . .). Hence KBi ⊢ φ and KBi ⊢ EGφ ∧ EGEGφ ∧
Finally, by the definition of CG, we conclude that KBi ⊢ φ ∧ CGφ for all i ∈ G,
thus SN ⊨ EG(φ ∧ CGφ). The other direction of the implication follows directly
from the definition of Ki and CG. Assume SN ⊨ EG(φ ∧ CGφ). It means that
for all i ∈ G, KBi ⊢ CGφ, hence by the definition of CG we know that KBi ⊢
φ∧EGφ∧EGEGφ∧. . .. By definition of ⊨ it follows SN ⊨ EG(φ∧EGφ∧EGEGφ∧. . .).
Finally, by distributivity of EG and definition of CG we conclude that SN ⊨ CGφ as
required.

c) Let φ =⇒ EG(φ ∧ ψ) be probable from no assumptions. KD4 also includes RC1,
therefore, using ⊢, from φ =⇒ EG(φ ∧ ψ) it can be derived that ⊨ φ =⇒ CGψ in
all KBi. Finally, since we made no assumption of any concrete SNM, we conclude
that ⊨ φ =⇒ CGψ.

Soundness of the axiomatisation of distributed knowledge

Lemma 6. For all formula φ in FKBL, SN ∈ SN and some group of agents G, the
following holds:

a) D1. SN ⊨ D{i}φ⇐⇒ Kiφ, i = 1, . . . , n,

126 Chapter IV

b) D2. SN ⊨ DGφ =⇒ DG′(φ) if G ⊆ G′,

c) DA2 and DA4. Axioms A2 and A4 of KD4, replacing the modality Ki with the
modality DG for each axiom.

Proof.

a) It easily follows from the definition of distributed knowledge. SN ⊨ D{i}φ iff∪
j∈{i} KBj ⊢ φ. Also we have that

∪
j∈{i} KBj = KBi. Hence we can conclude

that D{i}φ iff KBi ⊢ φ. By definition of ⊨, we know that Kiφ iff KBi ⊢ φ. There-
fore, we can conclude that SN ⊨ D{i}φ⇐⇒ Kiφ.

b) By the definition of distributed knowledge we know that SN ⊨ DG′φ holds if and
only if ∪i∈G′KBi ⊢ φ, since G ⊆ G′, we can rewrite the previous expression as
(∪i∈GKBi) ∪ (∪i∈G′\GKBi) ⊢ φ. We know from the assumption that DGφ holds,
hence ∪i∈GKBi ⊢ φ. By Lemma 8, we can deduce that (∪i∈GKBi)∪(∪i∈G′\GKBi) ⊢
φ holds. Finally, by the definition of ⊨, we can conclude that SN ⊨ DG′φ.

c) Distributed knowledge is equivalent to an agent which contains all the knokwledge
of the members of the group. Therefore, the proofs of all the axioms and derivation
rules is analogous to those of Lemmas 2 and 3, just by replacing Ki with DG.

Lemma 8. Given the set formulae Φ ⊆ FKBL, two formulae φ,ψ ∈ FKBL the following
holds:

If Φ ⊢ φ then Φ ∪ {ψ} ⊢ φ.

Proof. Assume Φ or Φ ∪ {ψ} are inconsistent, then anything can be derived from ⊢
(including φ), therefore if Φ ∪ {ψ} is inconsistent, Φ ∪ {ψ} ⊢ φ.

Assume now Φ∪{ψ} is consistent. None of the axioms in ⊢ (i.e., KD4) remove any
formula (see [29]). Therefore, adding more formula to the set of premises will strictly
increase the number of formulae that can be derived. Thus, if Φ ⊢ φ then we can
conclude that Φ ∪ {ψ} ⊢ φ.

IV.A.3 Preservation of satisfiability of a canonical Kripke model
constructed from an SNM

Theorem 3. If a formula φ is satisfiable in an SNM SN then φ is satisfiable in the
Kripke model KT (SN).

Model Checking Social Network Models 127

Proof. Fagin et al. have shown that a canonical Kripke model which satisfies a KD4-
consistent formula (and everything that can be derived from it) can be constructed [29].
Their proof can be adapted to our case. In particular, we show that if a formula φ is
satisfiable in SN, then it is included in a maximal KD4-consistent set. Let Con(ΦSN)

be a set containing all KD4 consistent sets generated from all subformulae of ΦSN and
their negations (see [29, Theorem 3.2.4] for the formal definition of how to construct
Con(ΦSN)). We will prove that for any formula φ, if SN ⊨ φ then φ ∈ V where V ∈
Con(ΦSN) and by [29, Theorem 3.2.4] it holds that φ is satisfiable in the corresponding
canonical Kripke model defined in Def. 14. The proof is carried out by induction on
the structure of the formula.

Case φ = p(
#»
t). Assume that SN ⊨ p(

#»
t) holds, then p(

#»
t) ∈ KBe and by Def. 14

p(
#»
t) ∈ ΦSN. Since ΦSN is a KD4 consistent set, there exists a V ∈ Con(ΦSN) such

that V = ΦSN.

Case φ = a(i, j) or φ = c(i, j). Assume that SN ⊨ a(i, j) holds, then a(i, j) ∈ Aa and
by Def. 14 a(#»

t) ∈ ΦSN. For the same reason as before, there exists a V ∈ Con(ΦSN)

such that V = ΦSN. The exact same proof holds for c(i, j).

Case φ = ¬ψ. By induction hypothesis assume that ψ ∈ V for some V ∈ Con(ΦSN).
Since ψ is a subformula of φ, from the construction of Con(ΦSN) there exists a set V
such that ¬ψ ∈ V .

Case φ = ψ1 ∧ ψ2. Since φ is KD4 consistent there exists a set V ∈ Con(ΦSN) such
that φ ∈ V .

Case φ = ∀x.ψ. By induction hypothesis assume that if SN ⊨ ψ[v/x] then ψ[v/x] ∈ V

for some V ∈ Con(ΦSN). By definition of ⊨ it follows that SN ⊨ ∀x.ψ iff SN ⊨ ψ[v/x]
for all v ∈ Do, hence concluding that ψ[v/x] ∈ V .

Case φ = Kiψ. Assume that SN ⊨ Kiψ. By definition of ⊨ it holds that KBi ⊢ ψ.
It leads to two possible cases: 1) If Kiψ ∈ ΦSN then ψ ∈ V for V ∈ Con(ΦSN) such
that V = ΦSN. 2) Otherwise, ψ has been derived, i.e., KBi ⊢ ψ, since ⊢ and KD4
include the same axioms and derivation rules, there exists a state V ∈ Con(ΦSN) which
includes φSN ∈ V and also Kiψ ∈ V is derived.

Case φ = SGψ or φ = EGψ. Both are derived operators from Ki. The proof easily
follows by their definition and the proof provided for the case φ = Kiψ.

Case φ = CGψ. Assume that SN ⊨ CGψ holds. By axiom C2 and the definition ⊨ we
can derive that ∀j ∈ G KBj ⊢ (ψ ∧CGψ). Thus, there exists V ∈ Con(ΦSN) such that
EG(ψ ∧CGψ) ∈ V . Applying again C2 in V we can derive that CGψ ∈ V as required.

128 Chapter IV

Case φ = DGψ. Let DKBG ≜ ∪i∈GKBi. Assume that SN ⊨ DGψ. By definition of ⊨
it holds that DKBG ⊢ ψ. It leads to two possible cases: 1) If ψ ∈ DKBG then there
exist an agent i ∈ G such that ψ ∈ KBi thereforeKiψ ∈ ΦSN by Def. 14. Consequently,
Kiψ ∈ V for V ∈ Con(ΦSN) such that V = ΦSN. Applying axioms D1 and D2 in V , we
conclude that DGψ ∈ V . 2) Otherwise, ψ is derived from the explicit knowledge of the
agents using any of the axioms in KD4 (including common knowledge and distributed
knowledge). Therefore we can conclude that ψ ∈ V for V ∈ Con(ΦSN) such that V
includes the conjunction of the knowledge of all agents in G.

Consistency of the characteristic formula φSN

Lemma 6. For all SN ∈ SN , φSN is KD45-consistent.

Proof. No negated connection or action predicates are added to ΦSN. Therefore, no
inconsistency can be derived from {c(i, j) | (i, j) ∈ Cc, c ∈ C} ∪ {a(i, j) | (i, j) ∈ Aa, a ∈
Σ} ∪ {p(#»

t) | p(#»
t) ∈ KBe}. Since KD4 does not include the axiom Kiφ =⇒ φ the

knowledge of the agents will not make Φ inconsistent. Moreover, the knowledge bases of
the agents are assumed to be consistent Def. 6, in particular we assume that agents can
derive new knowledge according the axiomatisation KD4. Only what the agents know
is included in ΦSN, i.e., ΦSN does not contain any formula of the form ¬Kiψ, therefore
no contradiction can be derived. Given the above it follows that φ is consistent.

IV.A.4 Preservation of satisfiability of an SNM constructed from
a canonical Kripke model

We prove that all formulae that hold in the state of the canonical Kripke model corre-
sponding to the characteristic formula are satisfiable in the original SNM. Here, we also
provide all the formal definitions required for the proof.

Definition 15 (Marked characteristic set). The marked characteristic set of an SNM
SN, denoted as ΦmSN, is constructed as follows:

ΦmSN = {pr_p(#»
t) | p(#»

t) ∈ KBe} ∪
{co_c(i, j) | (i, j) ∈ Cc, c ∈ C} ∪
{ac_a(i, j) | (i, j) ∈ Aa, a ∈ Σ} ∪

{Kiφ | φ ∈ KBi}

Model Checking Social Network Models 129

Definition 16 (Marked Kripke transformation function). We define the marked Kripke
transformation function, denoted KT m, as KT in Def. 14 except for step 1), where
KT m constructs a marked characteristic set (as defined in Def. 15).

Theorem 4. If a formula φ is satisfiable in the state sΦm
SN

of a Kripke model KT m(SN)
then φ is satisfiable in the SNM SN.

Proof. As we mentioned in Theorem 3, Fagin et al. show that all formula φ is satisfiable
in a state sΦ iff φ ∈ V where V is a maximal KD4 consistent set. We refer the reader
to [29, Theorem 3.2.4] for the formal details of how to extend a KD4 consistent set to a
maximal KD4 consistent set. Let V be a maximal KD4 consistent set from ΦmSN. We
can reduce the proof of this theorem to showing that if φ ∈ V then SN ⊨ φ. The proof
is split in two cases: 1) φ ∈ ΦmSN and 2) φ ∈ V \ ΦmSN.

Case φ ∈ ΦmSN. We split the proof in the three possible formulas that can be included
in ΦmSN by the definition of 16:

– Case φ = pr_p(#»
t). Let pr_p(#»

t) ∈ ΦmSN. By Def. 16 we derive that p(#»
t) ∈ KBe

and by ⊨ we conclude that SN ⊨ p(#»
t) holds.

– Case φ = ac_a(i, j) or φ = a(i, j). Let ac_a(i, j) ∈ ΦmSN. By Def. 16 we derive
that p(#»

t) ∈ Aa and by ⊨ we conclude that SN ⊨ a(i, j) holds. The same reasoning
holds for co_c(i, j).

– Case φ = Kiψ. Let Kiψ ∈ ΦmSN. By Def. 16 we derive that ψ ∈ KBi and by ⊨
we conclude that SN ⊨ Kiψ holds.

Case φ ∈ V \ ΦmSN. If a formula φ is in φ ∈ V \ ΦmSN it means that it is has been
derived from the explicit knowledge and predicates present in ΦmSN. As we have shown
in Section IV.4, the axiomatisation KD4 is sound. Therefore the same derivations can
be performed in SN.

In general, all elements in the a marked characteristic set can be uniquely identified
in an SNM, thus it is possible transform a marked characteristic set to the corresponding
SNM.

Definition 17 (SNM construction). Let UMS be the the universe of all possible marked
characteristic sets. We define the SNM construction function, SC : UMS → SN as
follows: The resulting SNM for ΦmSN:

SN = ⟨Ag,A,KB, π⟩

130 Chapter IV

where

• Ag = {i | Kiφ ∈ Sub(φmSN)}

• A contains all function symbols, constant symbols and relation symbols (without
the marking) present in the formulae of ΦmSN.

– KBe = {p(#»
t) | pr_p(#»

t) ∈ ΦmSN}

– for all c ∈ C, Cc = {(i, j) | co_c(i, j) ∈ ΦmSN}

– for all a ∈ Σ, Aa = {(i, j) | ac_a(i, j) ∈ ΦmSN}

• KB = {KBi = {φ | Kiφ ∈ ΦmSN}}i∈Ag

• π = ∅4

IV.A.5 Comparison of the complexity of the satisfiability prob-
lem in SNMs and Kripke models

Lemma 7. Given SN ∈ SN and a formula φ the following holds

O(
∑

Kiφi∈outerK(φ)

(2|φKBi
| × |φi|)) < O(2|φSN| × |φK |).

Proof. The formula φK is a conjunction of formulae starting with a Ki modality. More
specifically, φK has the following shape

φK = K1φ
1
1 ∧Kiφ

1
2 ∧ . . .K2φ

2
1 ∧K2φ

2
2 ∧ . . . ∧Kmφ

m
n

where m ∈ Ag and n ∈ N. Since Kiφ ∧Kiψ =⇒ Kiφ ∧ ψ holds for any φ and ψ, φK
can always be rewritten as

φK = K1φ1 ∧ . . . ∧Kmφm

where φ1 = φ1
1 ∧ φ1

2 ∧ . . . and φm = φm1 ∧ φm2 ∧ Since all φm are subformulae of
φK (without their corresponding Ki modality) the sum of their lenghts will always be
strictly smaller, i.e.,

|φ1|+ . . .+ |φi| < |φK |

Given the above, the following trivially holds
4π is empty since Kripke models do not contain information about the privacy policies of the agents.

Model Checking Social Network Models 131

O(|φ1|+ . . .+ |φi|) < O(|φK |)

Multiplying by a constant c in both sides of the inequality does not affect the result

O(c× (|φ1|+ . . .+ |φi|)) < O(c× |φK |)

By replacing c with 2|φSN| in the previous statement we obtain the following

O(2|φSN| × (|φ1|+ . . .+ |φi|)) < O(2|φSN| × |φK |)

Since multiplication distributes over addition the following holds

O(2|φSN| × |φ1|+ . . .+ 2|φSN| × |φi|) < O(2|φSN| × |φK |) (IV.1)

As we describe in Section IV.6 φKBi represents the conjunction of all formulae in the
knowledge base of agent i. Besides, the characteristic formula φSN is a conjunction of
the formulae of the knowledge bases of all agents plus the normal predicates. Therefore
for any i ∈ Ag it holds that 2|φKBi

| < 2|φSN|. From this fact and (IV.1) we derive the
following

O(2|φKB1
| × |φ1|+ . . .+ 2|φKBi

| × |φi|) < O(2|φSN| × |φ1|+ . . .+ 2|φSN| × |φi|) (IV.2)

Finally, by transitivity of < in (IV.1) and (IV.2) we conclude that

O(2|φKB1
| × |φ1|+ . . .+ 2|φKBi

| × |φi|) < O(2|φSN| × |φK |)

as required.

132 Chapter IV

133

Chapter V

An Automata-based Approach
to Evolving Privacy Policies
for Social Networks
Raúl Pardo, Christian Colombo, Gordon J. Pace and Gerardo Schneider

Abstract. Online Social Networks (OSNs) are ubiquitous, with more than 70% of
Internet users being active users of such networking services. This widespread use of
OSNs brings with it big threats and challenges, privacy being one of them. Most OSNs
today offer a limited set of (static) privacy settings and do not allow for the definition,
even less enforcement, of more dynamic privacy policies. In this paper we are concerned
with the specification and enforcement of dynamic (and recurrent) privacy policies that
are activated or deactivated by context (events). In particular, we present a novel
formalism of policy automata, transition systems where privacy policies may be defined
per state. We further propose an approach based on runtime verification techniques
to define and enforce such policies. We provide a proof-of-concept implementation for
the distributed social network Diaspora, using the runtime verification tool Larva to
synthesise enforcement monitors.

134 Chapter V

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 135

V.1 Introduction
As stated in [96] by Weitzner et al, “[p]rotecting privacy is more challenging than ever
due to the proliferation of personal information on the Web and the increasing analytical
power available to large institutions (and to everyone else) through Web search engines
and other facilities”. The problem being not only to determine who might be able to
access what information and when but also how the information is going to be used (for
which purpose). Addressing all these privacy-related questions is complex, and as today
there is no ultimate solution.

The above is particularly true for Online Social Networks (OSNs) (also known as
Social Networking Sites or Social Networking Services —SNSs), due to their explosion
in popularity in the last years. Sites like Facebook, Twitter and LinkedIn are in the top
20 most visited Web sites in the world [2]. Nearly 70% of the Internet users are active
on OSNs as shown in a recent survey [45], and this number is increasing. A number
of studies show that the number of privacy breaches is keeping pace with this growth
[56, 41, 51, 57]. The reasons for this increase on privacy breaches are manifold; just
to mention a few: i) Many users are not aware of the implications of content sharing
on OSNs, and do not foresee the consequences until it is too late; ii) Most users do
not take the time to check/change the default privacy settings, which are usually quite
permissive; iii) The privacy settings offered by existing OSNs are limited and are not
fine-grained enough to capture desirable privacy policies; iv) Side knowledge and indirect
disclosure, e.g. through aggregation of information from different sources, it is difficult
to foresee and detect; v) There currently are no good warning mechanisms informing
users of the potential breach of privacy, before a given action is taken; vi) Privacy
settings are static (they are not time- nor context-dependent), thus not being able to
capture the possibility of defining repetitive or recurrent privacy policies.

Recently, the following privacy flaw was pointed out in the Facebook messenger
app [9]. It was shown that it is possible to track users based on their previous con-
versations. It was enough to chat several times per day with users to accurately track
their locations and even infer their daily routines. It was possible since the app adds
by default the location of the sender to all the messages. This problem arises because
of some of the reasons in the previous list such as i), ii) and v). Facebook solution was
to disable location sharing by default, which might be seen as a too radical solution.
However, it is the best Facebook developers can do given the current state of privacy
protection mechanisms. We believe that there is room for better solutions that offer
protection to users while not restricting the sharing functionalities of the OSN. For
instance, this privacy flaw could have been solved with a privacy policy that says “My
location can only be disclosed 3 times per day”. This policy prevents tracking users while

136 Chapter V

still allowing users to share their location in a controlled manner. We called this type
of privacy policies evolving polices and they are the focus of this paper. Other examples
of evolving policies are “Co-workers cannot see my posts while I am not at work, and
only family can see my location while I am at home” or “My supervisor cannot see my
pictures during the weekend”.

In this paper we address the above problem, through the following contributions:
i) The definition of policy automata (finite state automata enriched with privacy policies
in their states), the definition of a subsumption and a conflict relation between policy
automata, and the proofs of some properties about these relations (Section V.2); ii) A
translation from policy automata into DATEs [17], the underlying data structure of
the runtime verification tool Larva [18] (Section V.3); iii) A proof-of-concept imple-
mentation of dynamic/recurrent privacy policies for the open source distributed OSN
Diaspora* [22] using Larva (Sections V.4,V.5).

V.2 Policy automata
In order to describe evolving policies, we adopt the approach of taking a static policy
language and use it to describe temporal snapshots of the policies in force. We then use
a graph structure to describe how a policy is discarded and another enforced, depending
on the events taking place e.g. user actions or system events.

V.2.1 Semantics of Policy Automata
Policy automata are defined as structures such that progressing through structure rep-
resents evolving policies, parametrised by a static policy language SPL. This approach
allows us to define a whole family of evolving policy languages, depending on the un-
derlying static language used.

Assumption 1. We assume that SPL has the notion of conjunction of policies such
that, for any two policies1 p1, p2 ∈ SPL, p1 & p2 ∈ SPL.

Definition 1. A policy automaton over a static privacy policy language SPL is a 4-
tuple ⟨Σ, Q, q0,→, π⟩ where: Σ is the alphabet — effectively the set of observable actions
of the underlying system; Q is the set of states in the automaton; q0 ∈ Q is the initial
state of the automaton; →⊆ Q×Σ×Q is the transition relation; and π ∈ Q→ SPL is
a function which maps each state to a privacy policy in SPL.

1In the rest of the paper we take SPL to be the set of well-formed policy formulae of the static policy
language.

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 137

We will write q a−→ q′ to indicate that there is a transition from state q to state q′,
labelled by a: q a−→ q′

df
= (q, a, q′) ∈→. We will take the transitive closure of the transition

relation to enable us to write q es=⇒ q′ to denote that the sequence of events es takes the
automaton from state q to state q′.

Example 1. To illustrate policy automata let us consider the policy ‘Co-workers cannot
see my posts while I am not at work, and only family can see my location while I am
at home’ (P1). If we use the static policy operator Fg(x) to denote that anyone in
group g is forbidden from performing action x (where x can refer to posting, viewing a
post, liking a post, etc.), we can express the first part of P1 to be Fco-workers(read-post),
and the second part to be Ffamily(see-location) (we use ḡ to denote the complement of a
group of users g). By synchronising with the actions of our social network application
through events marking the arrival at and departure from a location (enter(l) and leave(l)
respectively), we can express the evolving policy in the following manner2:

Fco-workers(read-post)

start

Fco-workers(read-post) &

Ffamily(see-location)

leave(work)

enter(work)

enter(home)

leave(home)

Non-deterministic and non-total transition relations in a policy automaton can lead
to policy behaviour which is typically not required in real-life policy analysis. For
instance, we do not want to consider automata that under the execution of an event,
randomly choose between the activation of two different static policies. For this reason,
we define the subset of sane policy automata which behave deterministically and never
deadlock.

Definition 2. We say that a policy automaton P = ⟨Σ, Q, q0,→, π⟩ is sane if its
transition relation is total and deterministic (functional). With sane policies, we write
q
e−→ and q es=⇒ (with e ∈ Σ and es ∈ Σ∗) to denote the unique state reachable from state

q, following action e and sequence es respectively. Finally, we will write policyP(es)
to denote the policy in force after following event sequence es from the initial state:
policyP(es)

df
= π(q0

es=⇒).

In order to give a semantics to policy automata, we require the semantics of the
underlying static policy language. Let σ ∈ SN be the state of the social network where

2When we draw a policy automaton, transitions for events that are not explicitly drawn are assumed
to be reflexive.

138 Chapter V

SN is the universe of all possible social network states. Given a static policy language
SPL, we write σ, e ⊢SPL p to denote that in the social network state σ an event e
respects privacy policy p. We assume that the social network (but not the policy) may
evolve over time through events via the relation →SN⊆ SN×Σ× SN which is assumed
to be a total function on the two first parameters.

Based on the semantics of the static policy language, we can now define the semantics
of policy automata:

Definition 3. The configuration of a policy automaton consists of the state of the
automaton3. The initial configuration is taken to be q0. Whether an event respects a
policy automaton in a particular configuration C is defined as follows:

σ, e ⊢SPL π(C)
σ, e ⊢PA C

SPL

This is extended over traces in the following manner:

σ, ε ⊢PA C
BaseTrace

σ, e ⊢PA C σ
e−→SN σ′ C

e−→ C ′ σ′, es ⊢PA C ′

σ, e : es ⊢PA C
IndTrace

Example 2. Consider the policy ‘Only up to 3 posts disclosing my location are allowed
per day in my timeline’ (P2), which can be encoded as the following automaton (we will
assume that from left to right, the states are named q0, q1, q2 and q3):

start Fall(post(my-location))

post(my-location) post(my-location) post(my-location)

midnight
midnight

midnight

Since we expect that posting the location when a policy prohibiting it is in force is
a violation, we would expect the static policy language semantics to show that for any
social network state σ: σ, post(my-location) ̸⊢SPL Fall(post(my-location)).

3We present these semantics in terms of general configurations, rather than the automata states,
since we envisage the extension of the automata to handle local symbolic state, requiring a richer
configuration but still in line with the definitions given in this paper.

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 139

From this, and given that π(q3) = Fall(post(my-location)) we can deduce that in
state q3, the policy clause is likewise violated whenever a post disclosing my-location is
performed, no matter the state of the social network: σ, post(my-location) ̸⊢PA q3.

Using the rule IndTrace, provided there is σ′ such that σ post(my-location)3===========⇒ σ′, we
have:4 σ, post(my-location)4 ̸⊢PA q0.

Note that here we write post(my-location)4 because we want to check that after
disclosing 3 times the user’s location, the forth one would be a violation of π(q3).

If the maximum number of posts were to be increased, the number of states in the
automaton would grow quickly. For the sake of presentation, in the rest of the paper, we
will also be enriching our notation in the examples to transition systems which have an
implicit symbolic state. Transitions are labelled by a triple: event/condition/state-update
— triggering when the specified event happens and the condition holds, performing the
state update before proceeding. The property allowing for 10 location posts can be
expressed in this notation in the following manner:

start Fall(post(my-location))

post(my-location)/posts < 10/posts + +

midnight//posts = 0

midnight//posts = 0

post(my-location)/posts == 10/

Such a symbolic automaton can be unfolded into a policy automaton possibly with
an infinite number of states. For instance, in the above example, the set of states would
be {(q, n) | q ∈ {q0, q1}, n ∈ N} where q holds the value of the (explicit) state, and
n the value of posts. Since in this paper we are concerned with runtime verification —
enforcing a dynamic policy along a single trace, the infinite number of states poses no
challenge to the decidability question.

States in policy automata do not contain all the privacy policies which are being
enforced in the OSN. Internally the OSN could be enforcing other static policies that
have been manually activated by the users. Policy automata are a separate layer to
control some static policies. When a policy automaton moves to a state, the static
policies in the new state are activated in the OSN. Similarly, when the automaton
leaves a state, the static polices are deactivated. Transitions to and from an empty
state just mean that there is no update of static policies.

One advantage of using policy automata is that one can combine them synchronously
to get the equivalent of conjunction over evolving policies. In order to do so, we require
the underlying SPL to have a notion of conjunction (cf. Assumption 1).

4The supra-index over events represent the number of occurrences of the event, so my-location3

represent the sequence of events my-location;my-location;my-location.

140 Chapter V

Policy automata can now be combined using standard synchronous composition over
a particular alphabet:

Definition 4. Given two policy automata P1 and P2 (such that Pi = ⟨Σi, Qi, q0i,→i

, πi⟩), the synchronous composition of the automata synchronising over actions G, is
defined to be the policy automaton P1∥GP2 = ⟨Σ1∪Σ2, Q1×Q2, (q01, q02), →, π⟩ where
π(q1, q2)

df
= π1(q1)& π2(q2) and the transition relation is defined as follows:

q1
a−→1 q

′
1 q2

a−→2 q
′
2

(q1, q2)
a−→ (q′1, q

′
2)

a ∈ G

q1
a−→1 q

′
1

(q1, q2)
a−→ (q′1, q2)

a /∈ G
q2

a−→2 q
′
2

(q1, q2)
a−→ (q1, q

′
2)

a /∈ G

Example 3. The policy automaton of Example 1 effectively is a composition of two
individual evolving policies. First “Colleagues cannot see my posts when I am not at
work”, which can be represented in the following automaton

Fco-workers(read-post)

start

q10
q11leave(work)

enter(work)

and secondly, “Only my family can see my location while I am at home”:

start

q20

Fco-workers(read-post) &

Ffamily(see-location)

q21

enter(home)

leave(home)

Let P1 and P2 denote the previous two automata, respectively. The following diagram
shows P12, the parallel composition of the previous automata P1∥∅P2 (the synchronisa-
tion set is empty because P1 and P2 do not communicate over any event):

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 141

Fco-workers(read-post)

start

(q10,q20)

Fco-workers(read-post) &

Ffamily(see-location)

(q10,q21)

(q11,q20)

Fco-workers(read-post) &

Ffamily(see-location)

(q11,q21)

enter(home)

leave(home)

enter(home)

leave(home)

leave(work) enter(work) leave(work) enter(work)

Note that this automaton is not equivalent to that of Example 1. In some transi-
tions that Example 1’s automaton do not update the static privacy policies (i.e., the
automaton remains in the same state) this synchronous composition updates the poli-
cies accordingly. Imagine, for instance, that a user goes from work to home without
leaving work (it is a possible scenario if the user lives at her workplace). After receiving
enter(work), enter(home), the automaton resulting from the synchronous composition
would active the policy Fco-workers(read-post) & Ffamily(see-location) whereas Example
1’s automaton would activate no policies. Formally, the state (q10,q21) should contain
the static policy Fco-workers(read-post) & Fco-workers(read-post) & Ffamily(see-location).
However, we require the & operator of the static policy language to be idempotent (cf. As-
sumption 2, see below), thus being able to reduce the policy to Fco-workers(read-post) &
Ffamily(see-location).

Though formally the evolving policies can thus be combined into a single one, in
practice one can keep them separate and enforce them independently, e.g. possibly on
separate machines, thus avoiding information leaks (if all the policies) have to be com-
municated to a central server for enforcement. For instance, one can see a user’s set of
policies being combined together over his or her local alphabet, and then synchronising
globally at a global level across users:

(p1,1∥U1
. . . ∥U1

p1,n) ∥Global (pm,1∥Um
. . . ∥Um

pm,n′)

V.2.2 Subsumption of dynamic privacy policies
Many notions can be carried over from the underlying static policy language to dynamic
policies expressed using policy automata. Provided that the static policy language has
a notion of semantic equivalence (which encompasses the usual properties of idempo-
tency, commutativity and associativity of conjunction), we can derive equivalence and
strictness ordering over policy automata.

142 Chapter V

Assumption 2. We assume that the static policy language SPL has the notion of
semantic equivalence =SPL which is assumed to be an equivalence relation.

Furthermore, conjunction is assumed to be commutative, associative and idempotent
under this equivalence: (i) p1&p2 =SPL p2&p1; (ii) p1&(p2&p3) =SPL (p1&p2)&p3;
and (iii) p&p =SPL p.

Based on this equivalence, we can extend this to policy automata equivalence by
quantifying over traces:

Definition 5. Two policy automata P1 and P2 (with Pi = ⟨Σi, Qi, q0i,→i, πi⟩) with a
common alphabet Σ (which requires Σ1 = Σ2) are equivalent if after following any trace,
they both end up in a state in which the policies are equivalent:

P1 =PA P2
df
= ∀es : Σ∗ · policyP1

(es) =SPL policyP2
(es)

Using standard approach, we can now define policy strictness ordering — a policy
is considered stricter than another if all behaviour allowed by the former is also allowed
by the latter.

Definition 6. Given policy automata P1 and P2 over alphabet Σ, we say that P1 is
stricter than P2, written P1 ⊑PA P2 as follows:

P1 ⊑PA P2
df
= P1∥ΣP2 =PA P1

The strictness relation can be shown to obey certain properties.

Lemma 1. The relation ⊑PA is transitive, antisymmetric and reflexive.

Example 4. Consider the policy automaton in Example 1 (P1) and the synchronous
composition of the two automata in Example 3 (P12).

As we remarked in Example 3, the two policy automata are clearly not equiva-
lent. However, we would expect P12 to be a stricter version of P1. To show this,
we note that the synchronous composition of P1 and P12, P1∥ΣP12 (where Σ is the
whole alphabet, including {leave(home), leave(work), enter(home), enter(work)}), and
P12 result in identical policies after following any trace. Formally, for all traces
es ∈ Σ∗ · policyP12∥P1

(es) =SPL policyP12
(es), and thus we can conclude that P12 is

stricter than P1: P12 ⊑PA P1.

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 143

V.2.3 Conflicting policy automata
In a similar manner as policy equivalence can be lifted from the static policy language
to evolving policies, we can extend the notion of conflicting policies. Two static policies
conflict when both cannot be satisfied or enforced at the same time. For example,
imagine that Alice sets the policy “Everyone can see the posts on my timeline” and
Bob activates a policy saying “Only my friends can see my posts”. If Bob posts in Alice’s
timeline which policy would apply? If the audience of the post is only Bob’s friends
Alice’s policy would be violated. Similarly, if the audience of the posts is everyone,
Bob’s policy would not be satisfied. In order to define conflicting policy automata, we
require the static policy language to include the notion of conflict between policies.

Assumption 3. The static policy language SPL must be equipped with the notion of
conflicting polices @SPL, which is assumed to be (i) symmetric; and (ii) closed under
conjunction: if p1@SPLp2 then for any p′1, it also holds that (p1 & p′1)@SPLp2.

We can lift the static policy conflict relation to one on evolving policies:

Definition 7. Given any static policy language SPL and policy automata P1 and P2 with
alphabet Σ:

P1 @PA P2
df
= ∃es ∈ Σ∗ · policyP1

(es) @SPL policyP2
(es).

The intuition behind the previous definition is simple. Any two automata are in
conflict if after the execution of a sequence of events, they end up in a state where their
policies conflict (at the static policy level).

Example 5. Imagine that Alice and Bob want to leverage the advantages of evolving
policies, and they rewrite the previous static policies in a more precise way, “Everyone
can see the posts on my timeline during my birthday” and “Only my friends can see
my posts when I am at home”. Combining the policy automata representing these two
policies, we can identify a conflict in a state reachable after a trace in which, Alice’s
birthday begins and afterwards (before the day ends) Bob goes home. Note that it is not
required that Bob posts in Alice’s timeline for the conflicting policies to be reached, since
it is known beforehand that both policies cannot be satisfied at the same time.

Based on this definition and the assumptions we made about conflicts over static
policies, we can prove that evolving policies are closed under increasing strictness.

Theorem 1. Given the policy automata P1 and P2 the following holds

144 Chapter V

P1 @PA P2 ∧ P ′
1 ⊑PA P1 =⇒ P ′

1 @PA P2.

V.3 Translation of policy automata to DATEs
Dynamic Automata with Timers and Events (DATEs) [17] are symbolic automata aimed
at representing monitors, with a corresponding compilation tool Larva. In this section,
we introduce the basic definitions (leaving out advanced element which are not necessary
for this paper) enabling us to provide the translation from policy automata, effectively
providing an implementation to the latter through Larva. As a monitoring formalism,
DATE transitions are event, condition, action triples: if a matching event occurs and
the condition — based on event parameters and the automaton symbolic state — holds,
then the action is carried out. The action can be used to either modify the automaton
state, interact with the event-generating system, or generate an alert as appropriate.

Definition 8. A symbolic automaton (SA) running over a system with state of type Θ,
is a quintuple ⟨Q, q0, a0, →, B⟩ with set of states Q, initial state q0 ∈ Q, initial action
to be executed a0 ∈ Θ → Θ, transition relation →⊆ Q×event×(Θ → B)×(Θ → Θ)×Q,
and bad states B ⊆ Q. Note that the transitions between automaton states are labelled
with: (i) an event expression which triggers the transition; (ii) an enabling condition on
the system state — encoded as a function from the system state to a boolean value; and
(iii) an action (code) which may change the state of the underlying system — encoded
as a function, which given a system state returns an updated system state.

A total ordering <, giving a priority to transitions, is assumed to be given so as to
ensure determinism.

The behaviour of an SA M , upon receiving a set of events, consists of: (i) choosing
the enabled transition with the highest priority; (ii) performing the transition (possibly
triggering a new set of events); and (iii) repeating until no further events are generated,
upon which the automaton waits for a system event.

V.3.1 Translation
Intuitively, the translation keeps the same states of the policy automaton, but introduces
transitions and states for each static policy. We note that the translation below only
handles the high-level enabling and disabling of policies, leaving the low-level checking
and enforcement up to a static policy checker. We note that the translation below only
handles conjunction of policies.

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 145

Given a policy automaton ⟨Σ, Q, q0,→, π⟩, for a given transition (q, e, q′) ∈→, we
generate an action which disables policies in the outgoing state, and enabling those in the
ingoing state, as follows: action(q, e, q′) = stopEnforcing(π(q)); startEnforcing(π(q′)),
where startEnforcing(p) and stopEnforcing(p) switches on and off the enforcement of
static policy p. Using this construction, we generate transitions of the SA labelled
as follows: →SA= {(q, e, true, action(q, e, q′), q′) | (q, e, q′) ∈→}. The resulting DATE
would be: ⟨Q, q0, start,→SA, ∅⟩ where start is an action representing the activation of
the automaton.

Example 6. Consider the policy automata presented in Example 1, which models the
policy ‘Co-workers cannot see my posts while I am not at work, and only family can see
my location while I am at home’. Assuming that the events leave(work), leave(home),
enter(work) and enter(home) exist, the automaton can be directly converted to a DATE
as follows:

start//E1

leave(work)//E1

enter(work)//D1

enter(home)//D1;E2

leave(home)//D2;E1

where E1, D1, E2 and D2 are defined as follows:

E1 = startEnforcing(Fco-workers(read-post))
D1 = stopEnforcing(Fco-workers(read-post))
E2 = startEnforcing(Fco-workers(read-post) & Ffamily(see-location))
D2 = stopEnforcing(Fco-workers(read-post) & Ffamily(see-location))

V.4 Implementation in Diaspora* using Larva
One of our objectives is to have an effective enforcement mechanism for evolving privacy
policies based on policy automata in a real OSN. In this section, we describe the details
of the implementation of policy automata using Larva in the OSN Diaspora*.

We chose Diaspora* since it is open source, which allows us to implement the inter-
action between the OSN and Larva. Diaspora* has a built-in mechanism for enforcing
static privacy policies. Pardo and Schneider have recently extended Diaspora* with a
prototype implementation of some privacy policies defined in the PPF framework [71,
67]. PPF is a formal (generic) privacy policy framework for OSNs, which needs to
be instantiated for each OSN in order to take into account the specificities of the
OSN. PPF was shown not only to be able to capture all privacy policies of Twitter

146 Chapter V

Figure V.1: High-level representation of the Diaspora*-Larva communication

and Facebook, but also more complex ones involving implicit disclosure of information.
PPF comes with a privacy policy language, PPL, which satisfies all the assumptions
placed for the static privacy language in policy automata (cf. Section V.2).

Using policy automata to model the evolution of the privacy policies makes it pos-
sible to define a modular enforcement of evolving policies. As we mentioned, policy
automata are independent of the static policy language of the OSN (except for the
assumptions on =SPL and &), and consequently, they are also independent of the un-
derlying enforcement of each particular static policy. Policy automata can be trans-
lated to DATEs (cf. Section V.3). In order to implement policy automata we use the
tool Larva [18], which automatically generates a monitor from properties expressed in
DATEs.

In order for the runtime enforcement to work we use a communication protocol
between Diaspora* and Larva. Every time a relevant event occurs in Diaspora* (i.e.,
an event that can update the state of the automata), it is reported to Larva. Then
Larva updates the state of the privacy policies (if applicable), and whenever a privacy
policy is updated Larva reports this change to Diaspora*, which would update the
corresponding (static) privacy policy (see Fig. V.1).

Given that Diaspora* is implemented in Ruby and the monitors that Larva gener-
ates are Java programs, we implement the communication protocol using sockets. One
socket is used by Diaspora* to send a message to Larva containing the event that has
occurred, plus additional information such as the user who triggered the event; if it is
a post the audience of the post, whether the post contains a location, etc. Larva mon-
itors detect (among other things) Java method calls corresponding to events on DATE
transitions. Therefore, we have implemented a Java program, which listens to the com-
munication socket and depending on the message sent by Diaspora* it calls a concrete
method causing the Larva automaton to update its state. When an automaton updates
its state, the privacy policies to be enforced might change. There is another socket that

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 147

the Larva monitor uses to send the privacy policies that Diaspora* should enforce. The
message sent by the monitor includes the policies that must be activated (policies of the
incoming state) and/or deactivated (policies of the outgoing state). This part of the
communication will also be handled by the Java program, which contains an auxiliary
method for sending messages to Diaspora*.

V.5 Case studies
As a proof-of-concept we have implemented two policy automata in the Disapora*-
Larva system presented in the previous section. Here we describe the concrete details
of this prototype. The code of these case studies can be found in [21].

V.5.1 Case 1: Protecting pictures during the weekend
In this case study we describe the implementation of the following evolving privacy
policy, “My supervisor cannot see my pictures during the weekend”. This is a simple
policy that only depends on the time of the week. Let Fsupervisor(see-pictures) represent
that my supervisor cannot see my pictures, the following DATE models the policy

start//

monday//stopEnforcing(Fsupervisor(see-pictures));

saturday(uid)//startEnforcing(Fsupervisor(see-pictures));

As we mentioned, Diaspora*’s privacy protection mechanism is based on an instan-
tiation of PPF . In this instantiation, we consider that a user appears in a picture if the
user is mentioned in the post containing the picture5. For this policy automaton Dias-
pora* is required to report the events saturday and monday. Each of them represents
the beginning of the day after which they are named. Every Saturday at 00:00 Dias-
pora* sends the message uid;saturday to Larva where uid is a user id. This message
is sent once for each user with her corresponding uid. At this point the automaton of
each user is updated. The automaton moves to the only possible state where it replies
with the message uid;exclude-supervisor;picture. When this message is received
by Diaspora*, it activates the static privacy policy that forbids posting a picture of a
user if her supervisor is part of the audience. More precisely, Diaspora*’s built-in en-
forcement mechanism will block any post that contains a picture and mention of a user
whose supervisor is included in the audience of the post. Similarly, on Monday at 00:00,
Diaspora* informs the automata with the message monday. All active automata update
their state, therefore no uid parameter is needed for this event. This choice also reduces

5Diaspora* does not support tagging users in pictures.

148 Chapter V

the amount of messages sent between Diaspora* and Larva. Finally, these automata
reply to Diaspora* with the message uid;include-supervisor;picture, which allows
again the user’s supervisor to be part of the audience of her pictures.

V.5.2 Case 2: Disclosing location at most 3 times per day
Here we describe the implementation of the policy automaton of Example 2, which we
translate to a DATE (as described in Section V.3) as follows

start//

post(uid,location)/posts < 3/posts + +

midnight//posts:=0

midnight//posts = 0;D0;

post(uid,location)/posts == 3/E0;

In the previous automaton E0 = startEnforcing(Fall(post(uid,location))) and D0 =

stopEnforcing(Fall(post(uid,location))). Note that we use the variable posts to symbol-
ically encode the explict states of the real policy automata (cf. Section V.2). There
are two events present in the transitions of the automaton, which therefore need to be
reported from Diaspora* to the Larva monitors when they occur, post(uid,location)
and midnight.

In our Diaspora* PPF instantiation, mentioning users in a post that includes a
location constitutes a disclosure of their location. Every time a user is mentioned in a
post (i.e., post(uid,location)), a message including the message uid;post;location is
sent to Larva, specifying the user id and that a location of this user has been disclosed.
The message is sent for each user mentioned in the post. As described before, there is
one Larva monitor per user, which controls the policy automaton of each individual.
When the message is received the automaton of the user specified by uid will be updated.
This update will increase the value of the automaton variable posts, whose initial value
is 0. After sending the message, Diaspora* waits for the answer of the automaton, in
case an update of the privacy policies of the user is required. In case posts is less than
3, there is no need to update the privacy policies, therefore the message do-nothing is
sent back. On the other hand, if posts is greater than 3, the automaton will move to
the state where the policy forbidding the disclosure of locations must be activated, thus
it will send the message disable-posting to Diaspora*. Note that it is not required
to specify the user id in the reply since Diaspora* initiated the communication.

As for the event midnight, Diaspora* sends the message midnight to the monitors
of all users every day at 23:59. If the monitors are in the state where the disclosure
of location is forbidden, they take the transition to the initial state. This transition
involves, firstly, resetting the variable posts to 0, and secondly, sending the message

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 149

uid;enable-posting;location back to Diaspora*, which removes the privacy policy
preventing the location of the user uid to be disclosed. If the automaton is already in
the initial state, it simply resets posts to 0.

V.6 Related work
The lack of a temporal dimension in privacy policies was already pointed out by Riesner
et al. [78]. In their survey, they show that there is no OSN that supports policies that
automatically change over time. The authors mention that Facebook allows users to
apply a default audience to all their own old posts, but there is a big gap between that
privacy policy and the family of evolving policies that we introduce in this paper.

Specifying and reasoning about temporal properties in multi-agent systems using
epistemic logic have been the subject of study for a long time. It began with the so
called interpreted systems (IS). In [29] Fagin et al. introduce IS as a model to interpret
epistemic formulae with temporal operators such as box and diamond. IS have been used
for security analyses of multi-agent systems. Though we do consider a temporal aspect,
the focus and objectives of our work are different from the work done in interpreted
systems, at least in what concerns the domain of application and the scope of the
approach. In our case, the policies themselves are the ones evolving based on events,
rather than the information on what is known to different agents at a given time.

Recent research has been carried out in extending IS to be able to reason about
past or future knowledge. In [8] Ben-Zvi and Moses extend Ki with a timestamp Ki,t,
making it possible to express properties such as “Alice knows at time 5 that Bob knew p

at time 3”, i.e., KAlice,5KBob,3 p. With the same essence but including real time, Woźna
and Lomuscio present TCTLKD [97], a combination of epistemic logic, CTL, a deontic
modality and real time. In these, and other related work, the intention is to be able to
model the time differences in the knowledge acquired by different agents due to delay
in communication channels. Although both our motivation as well as the application
domain differ from those of the aforementioned logics, they could be indeed useful to
express certain real-time policies not currently supported in our formalism.

Despite the richness of both timed epistemic logics, TCTLKD [97] and the epistemic
logic with timestamps [8], they would not be able to express recurrent policies as we
do. We are of course adding a separate layer beyond the power of the logical formalism
by using automata to precisely express when to switch from one policy to another. It
remains an interesting question what would be the expressivity of policy automata if we
consider an enhancement of PPF with timed extensions as done in some of the above
works in order to express richer (static) policies.

150 Chapter V

We have not defined here a theory of privacy policies (we have not given a formal
definition in terms of traces or predicates), nor have we developed a formal theory of
enforcement of privacy policies. To the best of our knowledge such a characterisation
does not exist for privacy policies. There is, however, work done in the context of
security policies, for instance the work by Le Guernic et al. on using automata to
monitor and enforce non-interference [43, 37] or by Schneider on security automata [83].
It could be instructive to further develop the theoretical foundations of policy automata
and relate it to security automata and their successors (e.g., edit automata [49]).

V.7 Conclusions
We have presented a novel technique to define and implement evolving privacy policies
(i.e., recurrent policies that are (de)activated depending on events) for OSNs. We have
defined policy automata as a formalism to express about such policies. Moreover, we
have introduced the notion of parallel composition, subsumption and conflict between
policy automata and we have proved some of their properties. We have defined a trans-
lation from policy automata to DATEs which enables their implementation by means
of the tool Larva. Furthermore, we have describe how to connect Larva monitors to
the OSN Diaspora* so that policy automata can effectively be implemented. In fact,
the presented approach would allow to plug in policy automata to any OSN with a
built-in enforcement of static privacy policies. Finally, as a proof-of-concept, we have
implemented a prototype of two evolving privacy policies.

The policy automata approach has some limitations. For instance, consider that
Alice enables the following policy “Only my friends can see my pictures during the
weekend”. Imagine that Alice and Bob are not friends. If Alice shares a picture on
Saturday, Bob will not have access to it. However, on Monday this policy would be
deactivated. What would be the effect of turning off this policy? It might be possible
that Bob gains access to all the pictures that Alice posted during the weekend, since
no restrictions are specified outside the scope of the weekend. In order to address this
problem we might need a policy language able to express real-time aspects, with an
element of access memory integrated within policy automata.

We are currently also extending policy automata with timing events such as timeouts.
This extension will be almost immediately implementable using Larva since DATEs
already support timeouts in their transitions. Another line of work is to extend policy
automata with location events. Users normally access OSNs through mobile devices.
These devices could directly report the location of users to their policy automata, which
avoids having to constantly report users’ location to the OSN.

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 151

V.A Appendix

V.A.1 Proofs
Lemma 1. The relation ⊑PA is transitive, antisymmetric and reflexive.

Proof. We proof each property separately:

• ⊑PA is reflexive We show that for all policy automata P the following holds

P ⊑PA P

which by the definition of ⊑PA is equivalent to

P∥ΣP =PA P

and by the definition of =PA, it is equal to

∀es ∈ Σ∗ · policyP∥P(es) =SPL policyP(es)

We show it by induction on the length of the trace.

Base case. Let ε be the empty trace. We show that the following holds

policyP∥P(ε) =SPL policyP(ε)

Given that the trace is empty both P is in its initial state q0 and by the definition
of policy() (cf. Def. 2) the following holds

π(q0)&π(q0) =SPL π(q0)

By Assumption 2, & is an idempotent relation therefore

π(q0) =SPL π(q0)

Inductive step. For all es ∈ Σ∗ and e ∈ Σ. We assume that

policyP∥P(es) =SPL policyP(es)

holds (Inductive hypothesis) and we show that the following holds

policyP∥P(e : es) =SPL policyP(e : es)

152 Chapter V

Let q be the state of P after the execution of e : es, by the definition of policy()
the following holds

π(q)&π(q) =SPL π(q)

Since & is an idempotent relation it holds that

π(q) =SPL π(q)

After the execution of e we have that

policyP∥P(es) =SPL policyP(es)

which holds by inductive hypothesis.

• ⊑PA is transitive We show that for all policy automata P1, P2 and P3 the follow-
ing holds

If P1 ⊑PA P2 and P2 ⊑PA P3 then P1 ⊑PA P3

As before, from the definition of ⊑PA and =PA (cf. Def. 6 and Def. 5, respectively)
we can rewrite the previous statement as

∀es ∈ Σ∗ · policyP1∥P2
(es) =SPL policyP1

(es) (V.1)

and
∀es ∈ Σ∗ · policyP2∥P3

(es) =SPL policyP2
(es) (V.2)

then
∀es ∈ Σ∗ · policyP1∥P3

(es) =SPL policyP1
(es)

We show it by induction on the length of the trace.

Base case. Let ε be the empty trace. We show that the following holds

policyP1∥P3
(ε) =SPL policyP3

(ε)

Let q10 , q20 and q30 be the initial states of the policy automata P1, P2 and P3,
respectively. We rewrite the premises (V.8) and (V.9) above as

π(q10)&π(q20) =SPL π(q
1
0) (V.3)

π(q20)&π(q30) =SPL π(q
2
0) (V.4)

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 153

and we want to show that

π(q10)&π(q30) =SPL π(q
1
0) (V.5)

By Equation V.3, the previous goal can be rewritten as

π(q10)&π(q20)&π(q30) =SPL π(q
1
0)

which trivially follows by replacing π(q20) on the left hand of (V.3) with π(q20)&π(q30)
(cf. equation (V.4)).

Inductive step. For all es ∈ Σ∗ and e ∈ Σ. We assume that

policyP1∥P3
(es) =SPL policyP1

(es)

holds (Inductive hypothesis) and we show that the following holds

policyP1∥P3
(e : es) =SPL policyP1

(e : es)

Let q1, q2 and q3 be states of the policy automata P1, P2 and P3 after the
execution of e : es, respectively. We rewrite the premises above as

π(q1)&π(q2) =SPL π(q1)

π(q2)&π(q3) =SPL π(q2)

and we want to show that

π(q1)&π(q3) =SPL π(q1)

which follows by the exact same reasoning as in the base case. After the execution
of e we have that

policyP1∥P3
(es) =SPL policyP3

(es)

which holds by inductive hypothesis.

• ⊑PA is antisymmetric We show that for all policy automata P1 and P2 the fol-
lowing holds

If P1 ⊑PA P2 and P2 ⊑PA P1 then P1 =PA P2 (V.6)

If P1 ̸=PA P2 and P1 ⊑PA P2 then P2 ̸⊑PA P1 (V.7)

154 Chapter V

Statement (V.6) follows from reflexivity of ⊑PA.
As before, by the definition of ⊑PA and =PA Statement (V.7) can be rewritten as

∃es′ ∈ Σ∗policyP1
(es′) ̸=SPL policyP2

(es′) (V.8)

and
∀es ∈ Σ∗ · policyP1∥P2

(es) =SPL policyP1
(es) (V.9)

then
∃es′′ ∈ Σ∗ · policyP2∥P1

(es′′) ̸=SPL policyP2
(es′′)

We show it by induction on the length of the trace.

Base case. Let ε be the empty trace. We show that if

policyP1
(ε) ̸=SPL policyP2

(ε)

and
policyP1∥P2

(ε) =SPL policyP1
(ε)

then
policyP2∥P1

(ε) ̸=SPL policyP2
(ε)

Let q10 and q20 be the initial states of the policy automata P1 and P2, respectively.
We rewrite the premises above as

π(q10) ̸=SPL π(q
2
0)

π(q10)&π(q20) =SPL π(q
1
0)

By replacing π(q10) on the first conjunct we get

π(q10)&π(q20) ̸=SPL π(q
2
0)

given that both automata are in the initial state, it is equivalent to

policyP2∥P1
(ε) ̸=SPL policyP2

(ε)

as required.
Inductive step. Let es ∈ Σ∗ and e ∈ Σ. We assume that

policyP2∥P1
(es) ̸=SPL policyP2

(es)

An Automata-based Approach to Evolving Privacy Policies for Social
Networks 155

holds (Inductive hypothesis) and we show that the following holds

policyP2∥P1
(e : es) ̸=SPL policyP2

(e : es)

Let q1 and q2 be states of the policy automata P1 and P2 after the execution of
e : es, respectively. We rewrite the premises above as

π(q1) ̸=SPL π(q2)

π(q1)&π(q2) =SPL π(q1)

and we want to show that

π(q2)&π(q1) ̸=SPL π(q2)

which follows by the exact same reasoning as in the base case. After the execution
of e we have that

policyP2∥P1
(es) ̸=SPL policyP2

(es)

which holds by inductive hypothesis.

Theorem 1. Given the policy automata P1 and P2 the following holds

P1 @PA P2 ∧ P ′
1 ⊑PA P1 =⇒ P ′

1 @PA P2

Proof. From the assumption the following holds

P1@PAP2 (V.10)

By the definition of @PA (cf. Def. 7) the following holds

∃trc ∈ Σ∗ · policyP1
(trc)@SPLpolicyP2

(trc)

Let q1 and q2 be the states of P1 and P2 after executing trc (respectively), then by the
definition of policy() (cf. Def. 2) the following holds

π(q1)@SPLπ(q2)

156 Chapter V

We also assume that
P ′
1 ⊑PA P1

By the definition of ⊑PA (cf. Def. 6) we have that

∀tr ∈ Σ∗ · policyP1∥P′
1
(tr) =SPL policyP′

1
(tr)

Since trc ∈ Σ∗ it also holds that

policyP1∥P′
1
(trc) =SPL policyP′

1
(trc)

Let q1 and q′1 be the states of P1 and P1’ after executing trc (respectively), then by the
definition of policy() it holds that

π(q1)&π(q1) =SPL π(q
′
1) (V.11)

Since we use the same trace trc, by Equation (V.10) and Assumption 3 it follows that

π(q1)&π(q′1)@SPLπ(q2)

By Equation (V.11) we can replace π(q1)&π(q′1)

π(q′1)@SPLπ(q2)

Finally, by the definition of @PA we conclude that

P ′
1@SPLP2

157

Chapter VI

Specification of Evolving
Privacy Policies for Online
Social Networks
Raúl Pardo, Ivana Kellyérová, César Sánchez and Gerardo Schneider

Abstract. Online Social Networks are ubiquitous, bringing not only numerous new
possibilities but also big threats and challenges. Privacy is one of them. Most social
networks today offer a limited set of (static) privacy settings, not being able to express
dynamic policies. For instance, users might decide to protect their location during
the night, or share information with difference audiences depending on their current
position. In this paper we introduce PPFT , a formal framework to express, and rea-
son about, dynamic (and recurrent) privacy policies that are activated or deactivated
by context (events) or time. Besides a formal policy language (PPLT), the framework
includes a knowledge-based logic extended with (linear) temporal operators and a learn-
ing modality (KBLT). Policies, and formulae in the logic, are interpreted over (timed)
traces representing the evolution of the social network. We prove that checking privacy
policy conformance, and the model-checking problem for KBLT , are both decidable.

158 Chapter VI

Specification of Evolving Privacy Policies for Online Social Networks159

VI.1 Introduction
Online Social Networks, also known as Social Networking Sites or Social Network Ser-
vices, have exploded in popularity in the last years. Over the past decade, the use
of Facebook [28] and Twitter [94], just to mention two of the most popular ones, has
increased at the point of becoming ubiquitous. Nearly 70% of the Internet users are
active on social networks as shown by a recent survey [45], and this number is increasing.
A number of studies show that the number of privacy breaches is keeping pace with
this growth [56, 41, 51, 57]. Very often users’ requirements are far from the privacy
guarantees offered by social networks which do not meet their expectations. The rea-
sons for that are multifold, ranging from the users’ lack of knowledge on the underlying
technology to fundamental technical issues of the technology itself.

We are here only concerned with the fact that the privacy settings currently available
in social networks are not suitable for capturing the dynamic aspect of privacy policies.
That is, privacy policies should take into account that the networks evolve, as well as
the privacy preferences of the users. The privacy policy may “evolve” due to explicit
changes done by the users (e.g., a user may change the audience of an intended post to
make it more restrictive), or because the privacy policy is dynamic per se. Examples
of the latter, are for instance: “My boss cannot know my location between 20:00-23:59
every day”, or “Only my friends can see the pictures I am tagged in from Fridays at
20:00 till Mondays at 08:00”. These are recurrent policies triggered by some time events
(“every day between 20:00 and 23:59”, and “every week from Friday at 20:00 till Monday
at 08:00”). Other policies may be activated or deactivated by certain events: “Only up
to 3 posts, disclosing my location, are allowed per day in my timeline”.

In this paper we present a formal framework to express evolving privacy policies.
We take FPPF [71] as a point of departure. FPPF is a formal framework for privacy
policies which consists of: i) A generic social network model (SNM); ii) A knowledge-
based logic (KBL) to reason about the social network and privacy policies; iii) A formal
language (PPL) to describe privacy policies (based on the previous logic). FPPF is a
an expressive privacy policy framework able to represent all privacy policies for social
networks like Facebook and Twitter, and beyond [71]. Though rich in what concerns its
expressiveness, FPPF is not suitable to express evolving privacy policies, in the sense
discussed above. In summary, our contributions in this paper are:
i) We introduce PPFT , an extension of FPPF able to represent recurrent privacy

policies parametrised with timed intervals. For that we syntactically extend the
privacy policy language PPL with timed intervals and recurrent behaviour (timed
PPL), and the underlying epistemic logic KBL with temporal operators (box and
diamond) and a learn operator (temporal KBL). Policies in PPL, and formulae in

160 Chapter VI

KBL, are interpreted over (finite) timed traces.
ii) We study properties of both the new privacy policy language and the underlying

logic, in particular showing that the new operator learn cannot be derived. We
prove decidability of the satisfaction relation for the logic, and of the conformance
relation for the policy language.
The paper is structured as follows, Section VI.2 introduces all the elements of the

new privacy policy framework. More precisely, in Section VI.2.1 we introduce temporal
KBL; in Section VI.2.2 we describe timed SNMs, we define a satisfaction relation for
formulae of the previous logic, we show that the model-checking problem is decidable,
and study the properties of the new learning modality; in Section VI.2.3 we present
the privacy policy language timed PPL, we define what means for a privacy policy
to be in conformance to a timed SNM and show that this procedure is decidable. In
Section VI.3 we analyse the complexity of the KBL model checking problem, and we
provide an alternative optimised model checking algorithm. All the proofs are in the
appendix with the exception of Theorem 1 which is presented in Section VI.3.

VI.2 Timed FPPF
In this section, we introduce the extension of FPPF with time, which contains the
following elements:

a) A knowledge-based logic KBLT with additional temporal modalities, inspired by
temporal logics such as LTL.

b) A social network model (as defined for FPPF), together with the notion of traces,
i.e., sequences of these models that capture the evolution of a social network which
we use to give semantics to the previous logic. We use SN to denote the universe
of all possible social network models.

c) A privacy policy language (PPLT), enabling the user to define a (possibly recurring)
time window in which their policy should be enforced.

Together, these parts form the new Timed First-Order Privacy Policy Framework,
PPFT . In the following sections, we describe each of the components separately.

VI.2.1 Temporal KBL
KBLT is a temporal knowledge-based logic for social networks. It contains the knowl-
edge modality present in all epistemic logics [29] and the temporal modalities box and
diamond. Additionally, it includes: i) Two special types of predicates, connection and

Specification of Evolving Privacy Policies for Online Social Networks161

action predicates. Connection predicates represent the “social” connections between
users. For instance, friends, colleagues, family, co-workers, and so forth. On the other
hand, action predicates model the actions which are permitted to be executed by a user.
For example, Alice can send a friend request to Bob or Alice can join events created
by Bob. We use C and Σ to denote the set of connection and action predicates, respec-
tively; ii) A modality to represent learning. It will allow us to differentiate between the
moment some piece of information has been learnt or whether it is known. We study
the relation between the learning and knowledge modalities in the following section.

Let T be a set (which will refer as vocabulary) which consists of predicate symbols
(p), function symbols (f) and constant symbols (c). Predicate and function symbols
have some implicit arity which corresponds to the number of arguments they take. We
assume an infinite supply of variables, which we write as x, y and so on. We can form
terms using the elements of T as follows: s ::= c | x | fi(#»s) where #»s is a tuple of terms
respecting the arity of fi. Let Ag be a finite set of agents. The syntax of KBLT is
defined as follows.

Definition 1 (Syntax of KBLT). Given agents i, j ∈ Ag, a nonempty set of agents
G ⊆ Ag, the predicate symbols an(i, j), cm(i, j), p(#»s) where m ∈ C and n ∈ Σ, and a
variable x. The syntax of the timed knowledge-based logic KBLT is inductively defined
as:

φ ::= φ ∧ φ | ¬φ | ∀x.φ | □φ | ♢φ | ξ
ξ ::= ψ | Liψ
ψ ::= ρ | ψ ∧ ψ | ¬ψ | ∀x.ψ | Kiψ | DGψ

ρ ::= cm(i, j) | an(i, j) | p(#»s)

The remaining epistemic modalities are defined as follows: SGφ ≜
∨
i∈GKiφ; EGφ ≜∧

i∈GKiφ; SLGφ ≜
∨
i∈G Liφ; ELGφ ≜

∧
i∈G Liφ.

Note that in the version of the logic presented here Li cannot appear within the
scope of a Kj operator. We use FT KBL to denote the set of all well-formed formu-
lae of KBLT according to category φ. Formulae in ψ, represent the KBL logic [67];
FKBL denote the set of well-formed KBL formulae.1 The epistemic modalities stand
for: Kiφ, agent i knows φ; Liφ, agent i learnt φ; SGφ, someone in the group G

knows φ; EGφ, everyone in the group G knows φ; SLGφ, someone in the group G

learnt φ; ELGφ, everyone in the group G learnt φ; DGφ, φ is distributed knowledge
in the group G. We use the following operators as syntactic sugar for permission:
P ji an := an(i, j), agent i is permitted to execute action an to agent j; SP jGan :=

1For simplicity of presentation we leave out the common knowledge operator from the logic. Though
rather technical its treatment would only need the machinery from standard epistemic logic.

162 Chapter VI

∨
i∈G an(i, j), at least one agent in G is permitted to execute action a to agent j;

GP jGan :=
∧
i∈G an(i, j), all agents in G are permitted to execute action a to agent j.

When we write “agent i is permitted to execute action an to agent j”, it means that agent
i is allowing j to perform an action an which directly involves i, e.g. PAlice

Bob friendRequest
would mean that Bob is allowed to send a friend request to Alice.

VI.2.2 Semantics of KBLT

KBLT formulae will be interpreted over traces of social network models. These models
are defined as social graphs [27] with agents, their knowledge bases and privacy policies,
and a first-order relational structure.

Definition 2 (Social Network Model [67]). Given a set of privacy policies Π, and a
finite set of agents Ag ⊆ AU from a universe AU ; a social network model (SNM) is a
social graph of the form ⟨Ag,A,KB, π⟩, where

• Ag is a nonempty finite set of nodes representing the agents of the social network;

• A is a first-order relational structure over the SNM, consisting of a set of predicate
symbols, function symbols and constant symbols interpreted over a domain from a
set {Do}o∈D, where D is a set of indexes for domains;

• KB : Ag → 2FKBL is a function returning the set of accumulated knowledge for
each agent, stored in what we call the knowledge base of the agent. We write KBi
to denote KB(i);

• π : Ag → 2Π is a function returning the set of privacy policies of each agent. We
write πi for π(i).

The knowledge base KBi of each agent i contains the explicit knowledge that the
agent has. Agents not only posses this explicit knowledge, but also anything that can be
derived using the S5 axiomatisation of epistemic logic [29] from the explicitly formulae
in their knowledge bases.

Definition 3. A derivation of a formula φ ∈ FKBL, is a finite sequence of formulae
φ1, φ2, . . . , φn = φ where each φi, for 1 ≤ i ≤ n, is either an instance of the axioms or
the conclusion of one of the derivation rules of the S5 axiomatisation which premises
have already been derived, i.e., it appears as φj with j < i.

Given a set of formulae Γ ∈ 2FKBL , we write Γ ⊢ φ to denote that φ can be derived
from Γ.

Specification of Evolving Privacy Policies for Online Social Networks163

post(Bob, 1)
∀η.(post(Bob, η) =⇒ loc(Bob, η))

Alice

∀x.(bYear(x) ∧ bMonth(x) ∧ bDay(x) =⇒ age(x))
loc(Bob, 1) bMonth(Alice) bDay(Alice)

Bob

loc(Bob, 1)
bYear(Alice)

Charlie

Friendship

Blocked

friendRequest

Figure VI.1: Example of Social Network Model

Example 1. Let SN be an SNM consisting of three agents Alice, Bob and Charlie,
Ag = {Alice,Bob,Charlie}; the friend request action, Σ = {friendRequest}; and the
connections Friendship and Blocked, C = {Friendship,Blocked}.

Fig. VI.1 shows a graphical representation of SN. In this model the dashed arrows
represent connections. Note that the Friendship connection is bidirectional, i.e., Alice
is friend with Bob and vice versa. On the other hand, it is also possible to represent
unidirectional connections, as Blocked: in SN Bob has blocked Charlie. Permissions
are represented using a dotted arrow. In this example, Charlie is able to send a friend
request to Alice.

The predicates inside each node represent the agents’ knowledge. Charlie and Bob
have the predicate loc(Bob, 1) inside the node, meaning that both know location number
1 of Bob. Besides predicates, agents’ nodes may also contain KBL formulae that may
increase the knowledge of the agents. For instance, Alice knows loc(Bob, 1) implicitly.
The rule Modus Ponens can be applied to ∀η.post(Bob, η) =⇒ loc(Bob, η) (included
in Alice’s knowledge base). This formula states that if Alice has access to a post of
Bob, she can infer his location. Alice has access to post(Bob, 1), therefore she can infer
loc(Bob, 1).

We use traces to capture the evolution of a social network. A trace is a sequence of
pairs consisting of an SNM together with a timestamp. A timestamp t is a natural num-
ber representing the number of milliseconds elapsed since January 1, 1900, 00:00:00.000.
We could have chosen a large number of equally good starting points; there is no spe-
cific reason for choosing 1900. We will use T to denote the set of timestamps. We
will also use a more human-readable format of YYYY-MM-DD hh:mm:ss.sss for indi-
vidual timestamps, optionally skipping the time part – then we assume it defaults to
00:00:00.000. Based on this, 2016-03-26 10:59:08.234 or 2000-01-01 (which represents

164 Chapter VI

2000-01-01 00:00:00.000) or 1950-12-10 15:35:00.474 are all valid timestamps.
The intuitive meaning of a trace is that each SNM is a snapshot of the social network

at point t, as if we froze the network, along with the knowledge and relationships
between its agents, at that moment. In addition, we also demand the trace to be finite.

Definition 4 (Trace). A trace σ is a finite sequence σ = ⟨(SN0, t0), (SN1, t1), . . . , (SNk, tk)⟩
such that, for all 0 ≤ i ≤ k, SNi ∈ SN and ti ∈ T.

The (untimed) evolution of a social network was formalised in [67] using a transition
relation SN e−→ SN′ where SN and SN’ are SNMs and e is an event from a set EVT (the
set of all the events that can be executed in the social network). Here we extend this
transition relation with timestamps, formally →⊆ SN × EVT × T × SN . The details
of how the elements of the SNM are changed because of the execution of the event are
formally described in [67], but they are not relevant for the purpose of this paper. In
order to explicitly define which event led to a given SNM in a trace, we sometimes
write SN0

e,t1−−→ SN1 to denote ⟨(SN0, t0), (SN1, t1)⟩ where SN0,SN1 ∈ SN , e ∈ EVT
and t0, t1 ∈ T.

We also introduce the notion of well-formed trace, as being a trace satisfying the
following two conditions. First, timestamps are strictly ordered from smallest to largest.
Second, the transition from (SNn, tn) to (SNn+1, tn+1) occurs due to the execution of
an event e ∈ EVT at time tn+1.

Definition 5 (Well-formed traces). Let σ = ⟨(SN0, t0), (SN1, t1), . . . , (SNk, tk)⟩ be a
trace. σ is well-formed if the following two conditions hold:

i) Let n ∈ N. Then for any i, j such that 0 ≤ i, j ≤ n and i < j, it is the case that
ti < tj.

ii) Let n ∈ N. For all (SNn, tn), (SNn+1, tn+1) ∈ σ, it is the case that SNn
e,tn+1−−−−→

SNn+1 where e ∈ EVT.

We use WFT to denote the set of all well-formed traces. To make it easier to reason
about the attributes of the whole trace, based on the attributes of individual networks,
we use the following shortcuts to refer to the SNMs in a trace: σ[t] denotes the SNM
SN such that (SN, t) ∈ σ; given t1, t2 ∈ T such that t1 ≤ t2, σ[t1..t2] represents the
well-formed subtrace of σ starting with the smallest t ≥ t1 such that (SN, t) ∈ σ, and
ending with the largest t ≤ t2 such that (SN, t) ∈ σ.

Often we need to refer to the components of a specific SNM in a trace. For that
purpose we use a superscript in the components of SNMs to indicate the SNM of the
trace to which the element belongs. For example, given σ and t, Agσ[t] stands for the

Specification of Evolving Privacy Policies for Online Social Networks165

Alice

Bob

SN

loc(Alice, 1)Alice

Bob

SN′

loc(Alice, 1)Alice

loc(Alice, 1)Bob

SN′′

Friendship Friendship Friendship
checkin(Alice), 1 opennewsfeed(Bob), 2

Figure VI.2: Example of a Trace of SNMs

set of agents in σ[t], Dσ[t]o for a domain in Aσ[t] and KBσ[t]i for i’s knowledge base in
σ[t].

Furthermore, let Agσ contain all agents present in the trace, Agσ =
∪

(SN,t)∈σ Ag
SN,

and Tσ denote the set of all timestamps associated with SNMs in the trace σ: Tσ =

{t | (SN, t) ∈ σ}.

Example 2. Consider a social network with the event checkin, which discloses the loca-
tion of users to all their friends, and the event opennewsfeed which retrieves all the posts,
pictures, locations, etc., that a user has access to. Let σ = ⟨(SN, 0), (SN′, 1), (SN′′, 2)⟩
be the following well-formed trace SN checkin(Alice),1−−−−−−−−−−→ SN′ opennewsfeed(Bob),2−−−−−−−−−−−−−→ SN′′. See
Fig. VI.2 for a graphical representation of σ.

It consists of the agents Alice and Bob, Agσ = {Alice,Bob}, but new agents could be
added by executing a sign up event. In this trace there are 3 timestamps, Tσ = {0, 1, 2}.
In the initial SNM, SN or σ[0], Alice and Bob are friends, (Alice,Bob) ∈ C

σ[0]
Friendship.

On the other hand, there is no knowledge neither in Alice’s nor Bob’s knowledge bases.
At time 1 Alice discloses her location by performing a checkin event. Of course, she
knows the location she just shared KBσ[1]Alice ⊢ loc(Alice, 1) (we use 1 as resource id to
the location of Alice after she executes the checkin). Bob, however, did not check his
newsfeed until time 2. Because of this it is at time 2 when he acquires the knowledge
about Alice’s location, i.e., KBσ[1]Bob�⊢loc(Alice, 1) and KBσ[2]Bob ⊢ loc(Alice, 1).

In what follows we define what means for a formula to be satisfied in a trace.

Definition 6 (Satisfaction). Given a well-formed trace σ ∈ WFT , agents i, j ∈ Agσ,
a finite set of agents G ⊆ Agσ, formulae φ,ψ ∈ FT KBL, m ∈ C, n ∈ Σ, o ∈ D, and
t, t′ ∈ Tσ, the satisfaction relation ⊨ is defined as shown in Table VI.1.

We use a special agent called environment (or simply e) which defines the truth
of predicates of the type p(#»s). The environment’s knowledge base (KBe) contains

166 Chapter VI

σ, t ⊨ □φ iff for all t′ ∈ Tσ, t′ ≥ t, σ, t′ ⊨ φ
σ, t ⊨ ♢φ iff there exists t′ ∈ Tσ, t′ ≥ t, such that σ, t′ ⊨ φ
σ, t ⊨ ¬φ iff σ, t�⊨ φ
σ, t ⊨ φ ∧ ψ iff σ, t ⊨ φ and σ, t ⊨ ψ
σ, t ⊨ ∀x.φ iff for all v ∈ Dσ[t]o , σ, t ⊨ φ[v/x]
σ, t ⊨ cm(i, j) iff (i, j) ∈ C

σ[t]
m

σ, t ⊨ an(i, j) iff (i, j) ∈ A
σ[t]
n

σ, t ⊨ p(#»s) iff KBσ[t]e ⊢ p(#»s)

σ, t ⊨ Kiφ iff KBσ[t]i ⊢ φ
σ, t ⊨ Liφ iff σ, t ⊨ Kiφ and �∃t′ < t such that σ, t′ ⊨ Kiφ

σ, t ⊨ DGφ iff (
∪
i∈GKBσ[t]i) ⊢ φ

Table VI.1: Satisfaction Relation for KBLT

all predicates which are true in the real world, e.g. location(Alice) = ‘‘Sweden′′. In
Table VI.1, Cm ⊆ Ag × Ag and An ⊆ Ag × Ag are binary relations used to interpret
connection and actions predicates, respectively. We define Ek+1

G φ as EGEkGφ, where
E0
Gφ is equal to φ. We use φ[v/x] to denote the usual capture-free substitution in

first-order logic. For simplicity, we tacitly assume that each variable v is mapped to its
own domain.

In their knowledge bases agents store all the information they get access to. At
a given moment in time, the knowledge base of an agent contains all the information
the agent have seen so far. Agents do not forget any piece of information since events
updating knowledge can only add new formulae, but never remove them. This was
formally defined in [67] where we describe the operational semantics rules which capture
the evolution of SNMs. Formally, for any σ and t ≥ 1 it always holds that

KBσ[t]i = KBσ[t−1]
i ∪ Φ (VI.1)

where Φ ∈ 2FKBL is a set of formulae representing the new knowledge that i learnt at
time t. Given the above, it is easy to show that the latest knowledge base will always
have the union of all the formulae that the agent had access to during the execution of
the trace. Hence the following trivially follows from (VI.1):∪

t′≤t

KBσ[t
′]

i = KBσ[t]i .

Therefore in order to check whether some piece of information is derivable from the
knowledge base at some time t it suffices to check derivability from KBσ[t]i . On the other

Specification of Evolving Privacy Policies for Online Social Networks167

hand, learning is new knowledge (i.e., it was not known before) that is acquired at a
given moment in time. As shown in Table VI.1, the difference with knowledge is that for
learning we require that the new information cannot be derived in any knowledge base
of the trace from a time previous to the one in which the formula is being evaluated.
For instance, if Alice posts her location at time 3 and Bob is part of the audience of
this post, then Bob has learnt Alice’s location at time 3, formally σ, 3 ⊨ LBobloc(Alice).
Moreover, it holds that Bob knows Alice’s location for any timestamp greater than 3
or σ, t ⊨ KBobloc(Alice) for t ≥ 3. Note that at time 3 Bob learnt Alice’s location, but
also knows it, σ, 3 ⊨ LBobloc(Alice) ∧KBobloc(Alice).

It always holds that if the agents learn something, then they know it. We call this
the learning axiom:

L. Liφ =⇒ Kiφ.

Lemma 1. The learning axiom is sound with respect to traces of SNMs.

It is easy to show that knowing does not imply learning in general. For instance, if
KBσ[t

′]
i ⊢ φ for some t′ < t then we have that σ, t ⊨ Kiφ holds but σ, t ⊨ Liφ does not

hold.
Another assumption in our models is that of perfect recall. When agents in the

system learn something, they know it forever. The perfect recall axiom is formally
defined as

PF. Kiφ =⇒ □Kiφ.

Lemma 2. The perfect recall axiom is sound with respect to traces of SNMs.

Example 3. Let σ be the trace introduced in Example 2. Now we can check whether
Bob learns Alice’s location after she performs the checkin action:

σ, 0 ⊨ □(friend(Alice,Bob) ∧ checkin(Alice) =⇒ ∃x.♢LBobloc(Alice, x)) (VI.2)

The □ operator requires that the implication over it applies for all t ∈ Tσ such that
t ≥ 0, which in this example are 0, 1 and 2. The ♢ operator represents that whenever
the premise holds, there will be a time in the future where Bob will learn a location of
Alice. In order to determine whether it is satisfied over σ, we look at all the elements
of the formula. The first conjunct of the premise, friend(Alice,Bob), is already satisfied
in SN and it remains true for all the trace, i.e., (Alice,Bob) ∈ A

σ[t]
Friendship for t ≥ 0.

checkin(Alice) is a predicate representing that Alice executed the event checkin. As
mentioned, this general purpose predicates are check in the environment’s knowledge
base. It first becomes true in SN’, i.e., checkin(Alice) ∈ KBσ[t]e for t ≥ 1. SN” is the
resulting SNM after Bob opens his newsfeed. At this moment he learns Alice’s location,

168 Chapter VI

i.e., KBσ[2]Bob ⊢ loc(Alice, 1). Therefore, since the premise holds at time 1 and at time 2
Bob learns the location we conclude that (VI.2) holds.

Even though the formula of the previous example hold in σ, it does not guarantee
that the location learnt by Bob is the one disclosed during Alice’s checkin. This is be-
cause the existential quantification ranges over all the location identifiers. Nevertheless,
(VI.2) stated that a location has been learnt, and indeed, it happened.

The model-checking problem for KBL formulae in SNMs is decidable [67]. The
addition of the new modalities preserves this property for the new KBLT .

Theorem 1 (Model-checking). Determining whether a formula φ ∈ FT KBL is satisfied
in a trace σ ∈ WFT at a given timestamp t ∈ Tσ, that is checking σ, t ⊨ φ, is decidable.

A proof of the theorem and analysis of its complexity is presented in Section VI.3.

VI.2.3 Timed PPL

We would like to equip the users of a social network with additional power in defining
their privacy policies. This is done by extending the original privacy policy language
PPL with time fields, which enable the user to specify a possibly recurring time window
frame in which their policy should be enforced. The basic form of the privacy policies
is as follows Jφ =⇒ ¬ψK[start | duration | recurrence]

a or J¬ψK[start | duration | recurrence]
a if

the policy has no conditions. The start field is mandatory, but recurrence and duration
are optional. Table VI.2 shows the intervals 0, 1, . . . , i where a policy must be enforced
according to its parameters. If the recurrence field is not defined, then a policy should
be only enforced in interval 0. We refer to the new language as timed privacy policy
language, PPLT .

In addition to the notion of a timestamp, we define a related notion of duration. A
duration d is a positive natural number representing the number of milliseconds elapsed
between two points in time. Simply put, it stands for the absolute difference of two
timestamps |t2−t1|, i.e., the time elapsed between t1 and t2. We will use a more human-
readable format of durations. For instance, d = 60000 will be 1 minute, d = 2167236000

will be 25 days, 2 hours and 36 seconds, and so on.
The starting time of a policy is always a timestamp, which allows us to pinpoint a

specific moment in (real) time from which the policy should be enforced. The other two
fields are duration and recurrence. They are written in the duration format. These two
fields define an offset from a specific time based on the first field. Table VI.2 shows how
the three time fields work together to capture certain time windows. A privacy policy
with the time fields [2016-16-02 14:00 | 6 hours] is meant to be enforced on February

Specification of Evolving Privacy Policies for Online Social Networks169

Interval Start End
0 start start + duration
1 start + recurrence start + recurrence + duration
2 start + 2 recurrence start + 2 recurrence + duration
3 start + 3 recurrence start + 3 recurrence + duration
...

...
...

i start + i recurrence start + i recurrence + duration

Table VI.2: Time windows defined by the time fields of a policy

16, 2016, from 14:00 to 20:00. On the other hand, [2016-01-01 18:00 | 12 hours | 1 day]
stands for every night (from 18:00 to 6:00), starting on January 1, 2016. We are now
ready to define the general shape of formulae used in the privacy policy language.

Definition 7 (Syntax of PPLT). Given agents i, j ∈ Ag, a nonempty set G ⊆ Ag,
a timestamp s, duration d and recurrence r, a variable x, a formula φ ∈ FKBL, the
predicate symbols cm(i, j), an(i, j), p(

#»s) ∈ A where m ∈ C and n ∈ Σ, the syntax of the
privacy policy language with time PPLT is inductively defined as:

δ ::= δ ∧ δ | ∀x.δ | τ

τ ::= J¬αK[s]
i | J¬αK[s | d]

i | J¬αK[s | d | r]
i |Jφ =⇒ ¬αK[s]

i | Jφ =⇒ ¬αK[s | d]
i |Jφ =⇒ ¬αK[s | d | r]

i

α ::= α ∧ α | ∀x.α | cm(i, j) | an(i, j) | α′
α′ ::= γ′ | Liγ
γ′ ::= Kiγ | DGγ

γ ::= γ ∧ γ | ¬γ | p(#»s) | γ′ | cm(i, j) | an(i, j) | ∀x.γ

Note that Li cannot appear under the scope of a knowledge modality. We will denote
the set of all formulae of PPLT as FT PPL and the set of all formulae created using the
α category (the restrictions) as FR

T PPL. Now we introduce the notion of conformance
of a privacy policy in a trace.

Definition 8 (Conformance). Given a well-formed trace σ ∈ WFT , an agent i ∈ Agσ,
formulae φ ∈ FT KBL, α ∈ FR

T PPL, o ∈ D, and δ, δ1, δ2 ∈ FT PPL, the conformance

170 Chapter VI

σ ⊨C δ1 ∧ δ2 iff σ ⊨C δ1 ∧ σ ⊨C δ2

σ ⊨C ∀x.δ iff for all v ∈ Dσ[t]o , σ ⊨C δ[v/x]

σ ⊨C J¬αK[s | d | r]
i iff for all c ∈ N0 such that

0 ≤ s+ cr ≤ max(Tσ),
σ ⊨C J¬αK[s + cr | d]

i
σ ⊨C J¬αK[s | d]

i iff σ[s .. s+ d], s ⊨ □(¬α)
σ ⊨C J¬αK[s]

i iff σ[s ..], s ⊨ □(¬α)
σ ⊨C Jφ⇒ ¬αK[s | d | r]

i iff for all c ∈ N0 such that
0 ≤ s+ cr ≤ max(Tσ),
σ ⊨C Jφ⇒ ¬αK[s + cr | d]

i
σ ⊨C Jφ⇒ ¬αK[s | d]

i iff σ[s .. s+ d], s ⊨ □(φ⇒ ¬α)
σ ⊨C Jφ⇒ ¬αK[s]

i iff σ[s ..], s ⊨ □(φ⇒ ¬α)

Table VI.3: Conformance Relation for PPLT

relation ⊨C is defined as shown in Table VI.3.

We use N0 to denote the set of natural numbers including 0. The relation ⊨C is
given in terms of the satisfaction relation ⊨. First, the recurrence parameter determines
the time windows in which the policy must hold. This is done by getting the starting
timestamps of each time window, i.e., from 0 to max(Tσ). Given that we consider finite
traces there will be a finite number of time windows. Afterwards, subtraces from the
calculated starting timestamp plus the duration of the policy are checked. In particular,
we use box to check that all SNMs satisfy the privacy policy. When the duration is not
specified we check from the starting timestamp to the end of the trace.

Theorem 2 (Checking conformance). Determining whether a privacy policy φ ∈
FT PPL is in conformance with a trace σ ∈ WFT , that is checking σ ⊨C φ, is de-
cidable.

In what follows we show some examples of using PPLT to encode evolving privacy
policies.

Example 4. On Friday, April 15, 2016, Alice decides that she wants to keep her private
life separate from her life as a graduate student. In a social network with privacy policies
using PPLT , she can keep her supervisor Bob from learning her location on weekends
by defining the following privacy policy:

δ = J¬LBoblocation(Alice)K[2016-04-16 | 2 days | 1 week]
Alice

Specification of Evolving Privacy Policies for Online Social Networks171

Given a trace of the social network Alice and Bob use, δ would be checked first in the
subtrace from Saturday 16th, 00:00, to Monday 18th, 00:00, then again from Saturday
23rd, 00:00, to the end of Sunday 24th, and so on.

In order for the trace to be in conformance with δ, in each of these subtraces, the
KBLT formula □(¬LBoblocation(Alice)) needs to be satisfied. Based on the satisfaction
relation (cf. Def. VI.1), this is only the case if the formula ¬LBoblocation(Alice) is
satisfied at every point of the subtrace. This, in turn, means that it must not be the case
that LBoblocation(Alice) is satisfied in any of the SNMs of the subtrace.

To determine whether LBoblocation(Alice), we check that location(Alice) can be
derived from Bob’s knowledge base at time t which represents the timestamp of the SNM
currently being checked. In other words, we have to determine whether Bob learnt (either
directly, or by inference) location(Alice) at point t. As t is a time in one of the time
windows δ is defined for (i.e., a weekend sometime after April 16th), Bob having access
to this particular piece of knowledge would be a violation of Alice’s policy, since it would
mean Bob managed to learn Alice’s location on a weekend. Note, however, that Bob
learning Alice’s weekend location at any point not during a weekend is not considered a
violation of the policy. This is due to the fact that the policy is not checked outside the
time windows it is defined for.

Example 5. Charlie will start a new one-month job on July 1st, 2016, and he would
like to ensure that, during this period, when he is at home only his friends can learn
about his posts. He achieves this by using the following policy of PPLT

δ = ∀x.Jhome(Charlie) ∧ ¬friend(Charlie, x) =⇒

¬Lxpost(Charlie, text)K[2016-07-01, 31 days]
Charlie

The predicate home(Charlie) is checked by consulting the environment. Checking whether
δ is violated ultimately boils down to checking whether all TSNMs in the trace, starting
at 2016-07-01 00:00 and ending at 2016-08-01 00:00, satisfy the whole formula inside
the policy. It should be noted, however, that the time when the post was actually posted
is irrelevant; what matters is when the users learn about it. So if Charlie is working
and her colleague Daniel somehow gains access to her post that was originally posted
when she was at home, it is not a violation of either of the policies.

Example 6. A few months ago Facebook decided to provide a way for users to get over
the end of a relationship in an easier way. It is carried out by limiting the information
that shows up from the former partner [62]. For instance, pictures, videos or posts from
the ex-partner do not appear in the newsfeed. This can be seen as a special set of privacy
policies that apply when users breakup. Of course, they can be modelled using PPLT .

172 Chapter VI

Consider the privacy policy “if we break up, then you can no longer learn about pictures
I am tagged in”. Let us say it is Frank who wants to enforce this and Eve is his current
girlfriend. He is free to write the following in PPLT :

δ = ∀η.Jbrokenup(Frank,Eve) ∧ taggedin(Frank, η) =⇒ ¬LEvepicture(η)K[t]
Frank

Here, too, checking whether δ is violated with respect to a trace means checking the
contents of the policy in all SNMs in the trace, starting at time t. So if Eve gains access
to a picture Frank is tagged in that is new to her (no matter when it was originally
posted) when they are no longer together, Frank’s policy will be violated.

VI.3 KBLT model-checking
In order to show the proof of Theorem 1, that is, the decidability of the model-checking
problem for KBLT , we present a naive model-checking algorithm which implements
directly the semantics of KBLT in Table VI.1.

Lemma 3. Let σ be a well-formed trace of length n, t ∈ Tσ be a timestamp, and
φ ∈ FT KBL be a formula. Let q be maximum number of nested quantifiers in φ and d
an upper-bound on the size of the domains for the quantifiers. There is an algorithm
that determines, using O(n× |φ| × dq × |Ag|) queries to the epistemic reasoning engine,
whether σ, t ⊨ φ.

Proof. We first expand the universal quantifiers in φ by inductively transforming each
subformula ∀x.φ′ into a conjunction with one conjunct φ′[v/x] for each element v in
the domain D. The resulting formula is quantifier free and has size O(|φ|×dq) where d
is a bound on the size of the domain and q is the maximum nested stack of quantifiers.
Let φ1, . . . , φm be the subformulas of the resulting formula, ordered respecting the
subformula relation. An easy induction on k < m shows that we can label—for every
agent and at every step of the trace—, starting from the earliest time-stamp with either
φk or ¬φk. We begin with the atomic part, ρ in Def. 1:

• Checking cm(e, f) and an(e, f) can be performed in constant time, simply by
checking the model at the given instant, for every agent.

• Checking p(#»s) at a given instant t requires one query to the epistemic reasoning
engine for KBσ[t]e (for the environment agent e and time stamp t).

Then, for the epistemic part (ψ in Def. 1) we first resolve all operators except Li:

Specification of Evolving Privacy Policies for Online Social Networks173

• Checking ψk = ¬ψj and ψk = ψj ∧ ψi can be done in constant time for each
instant t and agent i, using the induction hypothesis.

• Checking Kiψj requires one query to the epistemic engine for KBσ[t]i ⊢ ψj per
instant.

• Checking DGψ at a given instant can be done with |Ag| queries for each instant.

The operator Liψ is handled directly by checking the values of Kiψ in the present
instant and t the previous instant t′, which has been precomputed as whether the
formula ψ is present or not in the label for agent i at instants t and t′.

Finally, for the temporal part (φ in Def. 1), we traverse the trace from the end to
the beginning.

• Checking □φ at instant t requires obtaining φ at t and □φ at the next instant,
using the temporal expansion □φ ≡ φ ∧ Xφ.

• Checking ♢φ requires the same information, and hence can also be done in time
linear in the lenght of the trace, using the temporal expansion ♢φ ≡ φ ∨ Xφ.

It is easy to see that the semantics of KBLT is captured by the algorithm and the
bounds of the theorem in the number of queries to the epistemic engine are met.

Computing whether a formula φ can be derived from a collection of knowledge
facts is a PSPACE-complete problem by Fagin et al. in [29], so reducing the number of
queries is essential. Note that in the algorithm presented in Lemma 3 the number of
tests to the epistemic engine to resolve a Liφ formula is reduced to one based on the
fact that the knowledge of the agents grows monotonically and provided that (a) Kiφ

is memoized at every step, and (b) the sequence is visited in increasing order.

VI.3.1 Timestamping knowledge
An alternative solution to the algorithm in Lemma 3 is to add timestamps to formulae
in the agents’ knowledge bases. If Alice learns Bob’s location at time 3, we say that
(loc(Bob), 3) ∈ KBAlice. It also allows us to differentiate between a formula that has
been learnt twice. For example, Alice can also learn Bob’s location at time 7, thus
(loc(Bob), 3), (loc(Bob), 7) ∈ KBAlice.

This approach allows us to incrementally remember when facts are learnt by the
epistemic engine, but requires to know upfront the formula to model-check. This ap-
proach requires to update the notion of derivability (cf. Def. 6) to support timestamps.
For simplicity, this time we define a timed closure function which computes all derivable

174 Chapter VI

formulae from an agent’s knowledge base taking into account timestamps. We denote
this closure function Tcl : 2FKBL×T → 2FKBL×T, for the formal definition see Appendix
Def. 9. Thus the semantics of Ki and Li would be modified as follows

σ, t ⊨ Kiφ iff (φ, t′) ∈ Tcl(KBσ[t]i) where t′ ∈ T
σ, t ⊨ Liφ iff (φ, t) ∈ Tcl(KBσ[t]i)

The timestamps of the formulae that are added to the agents’ knowledge base must
grow monotonically. In the axioms and derivation rules of Tcl(KBi) (cf. Def. 9) when
two different timestamps are involved in the derivation we always take the maximum
for the derived formula. If one timestamp is involved we keep the value. It turns out
to be enough to preserve the monotonicity of the derivations.

Lemma 4. Time in Tcl(KBi) is monotonic.

In order to make sure of the correctness of this modification we also require that
Tcl(KBi) preserves the amount of knowledge that the agents can infer with respect to
the untimed version ⊢.

Lemma 5. For all φ ∈ FKBL, KBi ⊢ φ iff (φ, t) ∈ Tcl(KBi) where t ∈ T.

As expected adding timestamps to derivations keeps the problem decidable.

Lemma 6. For all φ ∈ FKBL and t ∈ T, determining whether (φ, t) ∈ Tcl(KBi) is
decidable.

VI.3.2 Further Optimizations
There are other optimisations that could be applied to obtain a more practical algorithm.
The first observation is that the size d of the domains in a practical SNM can be very
large, but the potentially interesing instantiations of a universal quantifier in a formula
can typically be bound with a much smaller value. This is the case when the sub-
formula within the quantifier is guarded by a limiting predicate, that is the antecedent
A of the formula ∀x.[A ⇒ B] is, for example, friend(Charlie, x). The only potential
instantiations that make the formula true are those friends of Charlie. This set can be
scoped much better than the whole population of the social network. Another future
optmization is to leverage the proof tree of one derivation for a subsequent derivation.
Consider the check at time t for KBσ[t]i ⊢ φ ∧ ψ. In a later check KBσ[t+1]

i ⊢ ψ we
could leverage the proof at time t to instantaneusly determine that ψ is derivable. Of
course, this approach requires to always keep the proof tree in memory, which might be
problematic if the knowledge bases of the agents grow quickly.

Specification of Evolving Privacy Policies for Online Social Networks175

VI.4 Related Work
To the best of our knowledge, this work is the first attempt to formalise privacy policies
for social networks which depend on time. However, specifying and reasoning about
temporal properties in multi-agent systems using epistemic logic have been subject of
study for a long time. It began with the so called interpreted systems (IS). In [29] Fagin
et al. introduce IS as a model to interpret epistemic formulae with temporal operators
such as box and diamond. IS have been used for security analyses of multi-agent systems.
For instance, IS have been used to formalise the notion of secrecy [38] and information-
flow properties such as non-interference [5]. KBLT has similar semantics to IS, but with
the difference that in IS perfect recall is not always assumed. It means that forgetful
agents can be modelled, unlike in SNMs.

Recent research has been carried out in extending IS to be able to reason about
past or future knowledge. In [8] Moses et al. extend Ki with a timestamp Ki,t. It
makes possible to express properties such as “Alice knows at time 5 that Bob knew p

at time 3”, i.e., KAlice,5KBob,3 p. KBLT is not as expressive as that of Moses, since
formulae in KBLT cannot talk about future of past knowledge. In KBLT we can
only differentiate between learning and knowing. Nevertheless, in the knowledge bases
proposed in Section VI.3 we include timestamps indicating when the agents learnt the
information. Thus, we claim that formulae in Moses’ language could be interpreted
in those knowledge bases. Using an approach similar to Moses’ epistemic logic would
make it possible to define learning in terms of knowledge, since the language permits
to syntactically specify the timestamp of the knowledge.

In [97] Woźna & Lomuscio present TCTLKD a combination of epistemic logic, CTL,
a deontic modality and real time. Formulae in TCTLKD are more expressive than
both of the languages we present in this paper KBLT and PPLT . The models used to
interpret formulae in TCTLKD are also more complex than the ones presented in this
paper, since they are based on a semantics for a branching logic. They are a combination
of timed automata and IS plus a an equivalence relation for modelling permission. For
our purpose we do not need such a complex modelling power. Even though it has not
been formally studied, we claim that the complexity of the model-checking problem of
formulae in TCTLKD is much higher than that of KBLT .

VI.5 Final Discussion
We have presented a novel privacy policy framework with support for dynamic recurrent
privacy policies that depend on time. It has been done by extending FPPF [67, 71].
Concretely, we have extended the knowledge-based logic with the temporal modalities

176 Chapter VI

□, ♢, and the learning modality Li resulting in KBLT . A satisfaction relation to check
formulae in KBLT has been defined as well. These elements correspond the intermediate
tools to the enforcement of privacy policies that depend on time. Additionally, we have
studied some properties regarding the relation between knowledge and learning. We
have provided the language PPLT to express timed privacy policies and a conformance
relation to check that the policies are not violated during the execution of a trace.
Finally, we have proved that checking conformance of a privacy policy in PPLT and
model-checking of KBLT formulae are decidable.

Yet there are some limitations in PPFT . Firstly, in KBLT we cannot write formulae
that describe knowledge at a given moment in time. This could be solved by introducing
a knowledge modality which includes the timestamp of the knowledge we are interested
in checking. It would make the learning modality derivable from knowledge. Secondly,
we only check the privacy policies during the time window specified in the policy. This
might not be as expressive as one might wish. Consider that Alice enables the following
policy “Only my friends can know my pictures during the weekend” (P1). Let Bob
be a friend of Alice. If Alice shares a picture on Saturday, Bob will have access to
it. Imagine now that on Monday Alice unfriends Bob. At this moment P1 should be
violated, because Alice is not a friend with Bob and Bob knows a picture of Alice during
the weekend. To enforce this stronger privacy policy we need to extend the logic not
only with timestamps in the modalities, but also in the predicates. It will also enable the
possibility of having more precise models where the timestamps of predicates represent
their own timestamp instead of the time when an agent learnt them.

There exists a prototype implementation of some of the policies of FPPF in the
social network Diaspora* [22, 21]. We are currently investigating how to adapt our
implementation to support PPFT privacy policies.

VI.A Appendix

VI.A.1 Formal definitions of timed knowledge bases
Definition 9 (Timed Closure of a Knowledge base). Given the knowledge base of an
agent i, KBi, Tcl(KBi) satisfies the following properties:

a) For all φ ∈ FKBL and t ∈ T, If (φ, t) ∈ Tcl(KBi) then (¬φ, t) ̸∈ Tcl(KBi),

b) Introduction and elimination rules for conjunction:

∧I - If (φ, t) ∈ Tcl(KBi) and (ψ, t′) ∈ Tcl(KBi), then (φ∧ψ,max(t, t′)) ∈ Tcl(KBi)
∧E1

- If (φ ∧ ψ, t) ∈ KBi, then (φ, t) ∈ Tcl(KBi),

Specification of Evolving Privacy Policies for Online Social Networks177

∧E2
- Analogous to ∧E1

but for ψ,

c) If (φ, t) ∈ Tcl(KBi) and (φ =⇒ ψ, t′) ∈ Tcl(KBi), then (ψ,max(t, t′)) ∈ Tcl(KBi),

d) If (φ, t) ∈ Tcl(KBi) then (Kiφ, t) ∈ Tcl(KBi),

e) If φ is provable in the axiomatisation S5 ([29]) from Tcl(KBi), then φ ∈ Tcl(KBi).
Formally:

A1 - If φ is an instance of a first-order tautology, then (φ, t⊤) ∈ Tcl(KBi),
A2 - If (Kiφ, t) ∈ Tcl(KBi) and (Ki(φ =⇒ ψ), t′) ∈ Tcl(KBi), then (Kiψ,max(t, t′)) ∈

Tcl(KBi),
A3 - If (Kiφ, t) ∈ Tcl(KBi), then (φ, t) ∈ Tcl(KBi),
A4 - If (Kiφ, t) ∈ Tcl(KBi), then (KiKiφ, t) ∈ Tcl(KBi),
A5 - If (φ, t) ̸∈ Tcl(KBi), then (¬Kiφ, t) ∈ Tcl(KBi),
R1 - Modus ponens, it is defined as c),
R2 - If (φ, t) is provable from no assumptions (i.e., φ is a tautology) then (Kiφ, t) ∈

Tcl(KBi),
C1 - (EGφ, t) ∈ Tcl(KBi) iff (

∧
i∈GKiφ, t) ∈ Tcl(KBi),

C2 - (CGφ, t) ∈ Tcl(KBi) iff (EG(φ ∧ CGφ), t) ∈ Tcl(KBi),
RC1 - If (φ =⇒ EG(ψ ∧ φ), t) is provable from no assumptions, then (φ =⇒

CGψ, t) ∈ Tcl(KBi),
D1 - (D{i}φ, t) ∈ Tcl(KBi) iff (Kiφ, t) ∈ Tcl(KBi),
D2 - If (DGφ, t) ∈ Tcl(KBi), then (DG′φ, t) ∈ Tcl(KBi) if G ⊆ G′,
DA2-DA5 Properties A2, A3, A4 and A5, replacing the modality Ki with the modal-

ity DG for each axiom.

Remark 1. The rules ∧E1 and ∧E2 can only be applied if the formula φ∧ψ was explicitly
added to the knowledge base to avoid illegal updates of timestamps. If ∧I was used to
construct φ∧ψ, the following derivation would be possible. Given that (φ, 1) ∈ Cl(KBi)
and (ψ, 4) ∈ Cl(KBi), by ∧I we get (φ∧ψ, 4) ∈ Tcl(KBi). Now if we apply ∧E1 we can
derive (φ, 4) ∈ Tcl(KBi), which adds an updated copy of φ to the knowledge base of the
agents. This update must be forbidden because it corresponds to unrealistic knowledge.

Remark 2. Tautologies in Tcl(KBi) have the special timestamp t⊤. It is used to
represent any timestamp, i.e., t = t⊤ for all t ∈ T. When tautologies are used in a
derivation involving other premises we will always take the timestamp of the premise
that is not a tautology, it is formally guaranteed by defining max(t, t⊤) = t.

178 Chapter VI

VI.A.2 Proofs
Lemma 1. The axiom L is sound w.r.t. traces of SNMs.

Proof. It trivially follows from ⊨ (cf. Def. 6). We show that for all σ ∈ WFT , t ∈ T
and φ ∈ FKBL the following holds σ, t ⊨ Liφ =⇒ Kiφ. Assume that σ, t ⊨ Liφ. By ⊨,
it follows that KBσ[t]i ⊢ φ. Therefore, by ⊨ we can conclude that σ, t ⊨ Kiφ.

Lemma 2. The perfect recall axiom is sound w.r.t. traces of SNMs.

Proof. It trivially follows from ⊨ (cf. Def. 6). We show that for all σ ∈ WFT , t ∈ T
and φ ∈ FKBL the following holds σ, t ⊨ Kiφ =⇒ □Kiφ. Assume that σ, t ⊨ Kiφ.
By ⊨, it follows that KBσ[t

′]
i ⊢ φ such that t′ ∈ Tσ and t′ ≤ t. By ⊨, σ, t ⊨ □Kiφ

holds iff for all t′′ ∈ T such that t′′ ≥ t. Since at t there exists a t′ such that t′ ≤ t

and information cannot disappear from KBi, for all t′′ ∈ Tσ such that t′′ ≥ t, it holds
KBσ[t

′′]
i ⊢ φ, therefore σ, t ⊨ □Kiφ holds.

Theorem 2. Determining whether a privacy policy φ ∈ FT PPL is in conformance with
a trace σ ∈ WFT , that is checking σ ⊨C φ, is decidable.

Proof. It follows from the Def. 8. We show it by induction on the structure of the
privacy policies. The base cases are J¬αKi and Jφ =⇒ ¬αKi with their corresponding
time frames [s] and [s | d]. Since satisfaction of KBLT formulae is decidable (cf.
Theorem 1), we need to establish decidability of computing the time frame. For [s]
it is decidable since we consider finite traces and it reduces to checking satisfaction at
time s of all the SNMs included in the finite subtrace from s to the end of the original
trace. The case [s | d] is analogous to the previous one, but taking a subtrace of the
original trace, which length is determined by the duration parameter. The inductive
steps are [s | d | r], ∧ and ∀. the case The case [s | d | r] splits the trace in time
frames according to the recurrence parameter. Given that σ is finite, there is only a
finite number of integers from 0 to max(Tσ), hence the splitting is finite. Moreover, it
reduces to the case [s | d], which by induction hypothesis is decidable. As in the proof
of Theorem 1 the inductive steps for ∀ and ∧ follow from their induction hypothesis.

Lemma 3. Time in timed derivations is monotonic.

Proof. It follows from the definition of Tcl(KBi) (cf. Def. 9). We show that none of
the properties in Def. 9 generate a formula with a timestamp less than that of any of
the premises applied in the derivation. Properties a), ∧E1 , ∧E2 , d), A1, A3, A4, A5,
R2, C1, C2, RC1, D1, D2, and DA3-DA5 do not change the timestamp of the premise
they are applied on. Therefore the timestamp of a formula derived using any of the

Specification of Evolving Privacy Policies for Online Social Networks179

previous properties will be equal to that of the premise(s). The remaining properties
∧I , c), A2, R1 and DA2 always take the maximum timestamp of the premises used to
derive the conclusion, hence the timestamp of a derived formula will always be greater
of equal to that of the premise(s) used in the derivation. Finally, we conclude that none
of the properties in Tcl(KBi) produces a formula with a timestamp smaller to that of
the premise(s) used in the derivation, hence time in these derivations is monotonic.

Lemma 4. For all φ ∈ FKBL, φ ∈ Cl(KBi) iff (φ, t) ∈ Tcl(KBi) where t ∈ T.

Proof. It trivially follows from the definition of Cl(KBi) [66]. Given that Tcl (cf. Def. 9)
is characterised by the exact same properties and since the operations regarding times-
tamps (i.e., take the maximum of two timestamps or keep the same timestamp) do not
affect the derivations using the axioms and rules of Tcl, we conclude that both sets
contain the same formulae.

Lemma 5. For all φ ∈ FKBL and t ∈ T, determining whether (φ, t) ∈ Tcl(KBi) is
decidable.

Proof. Checking whether a formula φ ∈ FKBL is derivable under the axiomatisation
S5 is decidable [29]. By definition, the closure function Cl (and consequently Tcl) are
S5 maximal-consistent sets, hence checking whether φ ∈ Cl(KBi) is decidable. There-
fore, the remaining question is whether the derivation algorithm for timestamps is
decidable. For properties a), ∧E1

, ∧E2
, d), A3, A4, A5, R2, C1, C2, RC1, D1, D2,

and DA3-DA5, it is trivially decidable since t is not updated. For ∧I , c), A2, R1 and
DA2, it is also decidable since computing the maximum of two numbers is decidable.
Finally, when φ is a tautology (φ,⊤) ∈ Tcl(KBi), hence once it is established that φ is a
tautology the value of t is irrelevant (since t = ⊤ for all t ∈ T), and as mentioned, deter-
mining whether φ a tautology is decidable. Finally, we conclude that (φ, t) ∈ Tcl(KBi)
is decidable.

180 Chapter VI

181

Chapter VII

Timed Epistemic Knowledge
Bases for Social Networks
Raúl Pardo, César Sánchez and Gerardo Schneider

Abstract. We present an epistemic logic equipped with time-stamps in the atoms
and epistemic operators, which allows to reason not only about information available
to the different agents, but also about the moments at which events happens and new
knowledge is acquired or deduced. Our logic includes both an epistemic and a belief
operator, which allows to model the disclosure of information that may not be accurate.

Our main motivation is to model rich privacy policies in online social networks. On-
line Social Networks (OSNs) are increasingly used for social interactions in the modern
digital era, which bring new challenges and concerns in terms of privacy. Most social
networks today offer very limited mechanisms to express the desires of users in terms of
how information that affects their privacy is shared. In particular, most current privacy
policy formalisms allow only static policies, which are not rich enough to express timed
properties like “my location after work should not be disclosed to my boss”. The logic
in this paper makes it possible to express rich properties and policies in terms of the
knowledge available to the different users and the time of actions and deductions. Our
framework can be instantiated for different OSNs, by specifying the effect of the actions
in the evolution of the social network and in the knowledge disclosed to each agent.

We present an algorithm for deducing knowledge, which can also be instantiated
with different variants of how the epistemic information is preserved through time. Our
algorithm allows to model not only social networks with eternal information but also
networks with ephemeral disclosures. Policies are modelled as formulae in the logic,
which are interpreted over timed traces representing the evolution of the social network.

182 Chapter VII

Timed Epistemic Knowledge Bases for Social Networks 183

VII.1 Introduction
Online Social Networks also known as Social Networking Sites, like Facebook [28], Twit-
ter [94] and Snapchat [86] have exploded in popularity in recent years. According to a
recent survey [45] nearly 70% of the Internet users are active on social networks.

Some concerns, including privacy, have arisen alongside this staggering increase in
usage. Several studies [56, 41, 51, 57] report that privacy breaches are growing in
number. Currently, the most popular social networks do not offer mechanisms that
users can use to guarantee their desired privacy effectively. Moreover, virtually all
privacy policies are static and cannot express timing preferences, including referring to
temporal points explicitly and policies that evolve in time.

In [69] we presented a privacy policy framework able to express dynamic privacy
policies by introducing an explicit learning operator and time intervals in the semantics
of policies. The framework consists of a knowledge based logic to characterise what users
in the social network know, and a privacy policy language, based on the previous logic,
where users can limit who can know their information and when. Policies and formulae
in the logic are interpreted over social network models which faithfully represent the
social graph of OSNs. The policy language allows for the representation of recurrent
privacy policies, .e.g., ‘During the weekend only my friends can see my pictures’. Note
that the previous policy only requires to activate the static policy ‘only my friends can
see my pictures’ during weekends.

Though quite expressive, a major restriction of the logic in [69] is that it does not
have time, so one cannot express different instants at which an event happens and when
knowledge is acquired. Moreover, the logic only includes a knowledge modality thus
implicitly assuming that the information that users are told is true. This assumption
is, however, not realistic in social networks as users may also have beliefs given that not
all sources of information are truthful. Information that users disclose might be false.
There exists a growing interest in the detection of fake news [91, 92, 93].

To address this issues we propose to define a logic that: i) is tailored for social
networks, i.e., allows for expressing properties based on the social connections between
users; ii) combines knowledge and belief modalities to differentiate between beliefs that
might be false and true knowledge; iii) has time-stamps in modalities and atoms, thus
enabling the possibility of referring to the time of information, e.g., a weekend location,
and the moment when it was learnt.

There exist already some logics that include these elements—but separately. One
line of work studies logics where the belief modality and atoms are time-stampted [100].
Unfortunately, this logic lacks of a knowledge modality, and is not tailored for social
networks. Instead, it is defined to reason about AGM belief revision, which is a more

184 Chapter VII

general setting than privacy in social networks. A logic to reason about how beliefs
spread out in Twitter has been introduced in [98]. This logic, though tailored for social
networks, does not include time-stamps, so it cannot be used for reasoning about time.
Finally, [39] propose an axiomatisation of epistemic logic which combines knowledge
and belief, but again, it does not contain time-stamps in modalities or atoms.

In this paper we leverage the insights from previous work to define a logic that com-
bines knowledge, belief and time and is tailored for the purpose of specifying dynamic
privacy policies for social networks. We refer the reader to Section VII.5 for a more
detailed comparison of related works.

More concretely, we extend [69] by enriching the logic with explicit time instants,
both in the atoms and in the epistemic operators. In the resulting logic, one can refer
to the instant at which some knowledge is inferred, for example about the knowledge
of another agent at another instant. The expressive power of the new logic allows to
derive the learning operator from the time-stamped knowledge.

Second, we equip the logic with belief operators, with the only restriction that agents
cannot believe in something that they know is false. This allows the instantiation of
the framework to OSNs where gossiping is allowed, that is, the spreading of potentially
false information. Analogous to the learning operator, we derive the accept operator as
the moment in which an agent start believing in something.

Third, we introduce the notion of extended knowledge bases which allow to answer
queries of (temporal) epistemic formulas against the knowledge acquired during a se-
quence of events. The algorithm uses epistemic deductive reasoning starting from a set
of axioms, which include the corresponding conventional axioms of epistemic reasoning
populated for all instants. Depending on the desired instantiation of the framework,
the axiom of perfect recall or weaker versions of it can be instantiated which allows to
model knowledge acquisition in eternal OSNs like Facebook and ephemeral OSNs like
Snapchat. When weaker versions are used, one can derive operators that capture when
an agent stops knowing something (the forget operator) or stops believing in something
(the reject operator).

Using extended knowledge bases we define the semantics of the logic used to con-
struct dynamic privacy policies. This provides the means for a particular OSNs to
enforce privacy policies, for example by blocking an event that would result in a viola-
tion of a user’s policy. We illustrate with examples how our rich logic allows to express
privacy policies and how agents can infer knowledge in different instantiations of the
framework.

The rest of the paper is organised as follows. Section VII.2 presents the framework
and Section VII.3 introduces the logic KBLRT . Section VII.4 shows how to express
privacy policies using KBLRT . Section VII.4 shows how different existing OSNs can

Timed Epistemic Knowledge Bases for Social Networks 185

be modeled within our framework, including Snapchat. Finally, Section VII.5 presents
related work and Section VII.6 includes concluding remarks.

VII.2 A Timed Privacy Policy Framework

We introduce a formal privacy policy framework for OSNs where properties regarding
users knowledge and beliefs as well as time can be expressed. Our framework extends
the framework in [69], in which temporal properties were expressed using temporal
operators □ and ♢. Our solution allows to describing properties at concrete moments
in time. We also introduce a modality for beliefs which allows to distinguish between
information that might be inaccurate.

Our framework, called PPFRT , consists of the following components:

1. A timed epistemic logic, KBLRT , where modalities and predicates are times-
tamped.

2. Extended social graphs, called social network models, which describe the state of
the OSN. These graphs contain the users or agents in the system and the relations
between them, and their knowledge and beliefs. We use SNRT to denote the
universe of social network models, and use the notion of trace of social network
models to describe the evolution of the system.

3. A parameter ω ∈ N which determines for how long users remember information,
e.g., 5 seconds, 24 hours or indefinitely. Users can acquire new believes that
challenge their current knowledge and believes, which requires a resolution. We
illustrate this by a parameter β, with two possibilities conservative or susceptible,
which specifies how users behave when they learn new beliefs which are inconsis-
tent with their current beliefs.

4. A privacy policy language based on the previous logic.

VII.3 A Timed Knowledge Based Logic

KBLRT is a knowledge based first order logic which borrows modalities from epistemic
logic [29], equips modalities and predicates with time-stamps, and allows quantifiers
over time-stamps.

186 Chapter VII

VII.3.1 Syntax

Let T be a vocabulary which consists of a set of predicate symbols, function symbols,
and constant symbols. Predicate and functions symbols have some implicit arity. We
assume an infinite supply of variables x, y, Terms of the elements of T can be built
as s ::= c | x | f(#»s) where #»s is a tuple of terms respecting the arity of f .

Let T denote a set of time-stamps, which is required to be a non-Zeno totally ordered
set, that is, there is a finite number of instants between any two given instants. We
use time-stamps to mark pieces of information or to query the knowledge of the agents
at specific points in time. We consider Ag be a set of agents, D a set of domains, and
use EVT for set of events that can be executed in a social network. For instance, in
Facebook, users can share posts, upload pictures, like comments, etc. The set of events
that users can perform depends on the social network. Similarly, we use C and Σ to
denote special sets of predicate symbols that denote connections (between agents) and
permissions. We introduce the syntax of KBLRT as follows:

Definition 1 (Syntax of KBLRT). Given agents i, j ∈ Ag a time-stamp t ∈ T, an
event e ∈ EVT, a variable x, a domain D ∈ D, predicate symbols ctc(i, j), ata(i, j), pt(#»s)

where c ∈ C and a ∈ Σ, the syntax of the real-time knowledge-based logic KBLRT is
inductively defined as:

φ ::= ρ | φ ∧ φ | ¬φ | ∀t · φ | ∀x : D · φ | Kt
iφ | Btiφ

ρ ::= ctc(i, j) | cta(i, j) | pt(#»s) | occurredt(e)

Given a nonempty set of agents G ⊆ Ag, the additional epistemic modalities are defined
StGφ ≜

∨
i∈GK

t
iφ, EtGφ ≜

∧
i∈GK

t
iφ.

The epistemic modalities stand for: Kt
iφ, agent i knows φ at time t; StGφ, someone

in the group G knows φ at time t; EtGφ, everyone in the group G knows φ at time t.
We use the following notation as syntactic sugar P ji at ≜ a(i, j, t) , meaning that “agent
i is permitted to execute action a to agent j”. For example, PAlice

Bob friendRequest5 means
that Bob is allowed to send a friend request to Alice at time 5. We will use FKBLRT to
denote the set of all well-formed KBLRT formulae. The syntax introduces the following
novel notions that have not been considered in other formal privacy policies languages
such as [31, 12, 66, 69].

Time-stamped Predicates. Time-stamps are explicit in each predicate, including
connections and actions. A time-stamp attached to a predicate captures those moment
in time when that particular predicate holds. For instance, if Alice and Bob were friends
in a certain time period, then the predicate friendt(Alice,Bob) is true for all t falling

Timed Epistemic Knowledge Bases for Social Networks 187

into the period, and false for all t outside. This can be seen as the valid time in temporal
databases [87].

Separating Knowledge and Belief. Not all the information that users see in a social
network is true. For instance, Alice may tell Bob that she will be working until late,
whereas she will actually go with her colleagues to have some beers. In this example,
Bob has the (false) belief that Alice is working.

Traditionally, in epistemic logic, the knowledge of agents consists on true facts. Po-
tentially false information is regarded as beliefs [29]. The set of axioms S5 characterise
knowledge and the axioms of KD45 characterise belief [29]. For KBLRT we combine
both notions in one logic. In the following section we describe how to combine these
two axiomatisations based on the results proposed by Halpern et al. in [39].

Time-stamped Epistemic Modalities. Time-stamps are also part of the epistemic
modalities K and B . Using time-stamps we can refer to the knowledge and beliefs
of the agents at different points in time. For example, the meaning of the formula
B20: 00

Bob loc19: 00(Alice,work) is that Bob beliefs at 20: 00 that Alice’s location at 19: 00
is work.

Occurrence of Events. It is important to be able to determine when an event has
occurred. Such an expressive power allows users to define policies that are activated
whenever someone performs an undesired event. Examples of these policies are: “if
Alice unfriends Bob, she is not allowed to send Bob a friend request” or “if a Alice
denies an invitation to Bob’s party, then she cannot see any of the pictures uploaded
during the party.”

Here we introduce occurredt(e) to be able to syntactically capture the moment when
a specific event e occurred. A similar predicate was introduced by Moses et al. in [8]
for analysing communication protocols.

VII.3.2 Semantics
Real-Time Social Network Models

We introduce formal models which allow us to reason about specific social network
states at a given moment in time. These models leverage the information in the social
graph [27]—the core data model in most social networks [30, 11, 61]. Social graphs
include the users (or agents) and the relationships between them. Moreover, in our
models we include a knowledge base for each agent, and the set of privacy policies
that they have activated. We reuse the models defined for the previous version of this
framework [69]. Nevertheless, the expressiveness of the privacy policies that can be
enforced in PPFRT have substantially increased (see Section VII.4).

188 Chapter VII

Definition 2 (Social Network Models). Given a set of formulae F ⊆ FKBLRT , a set
of privacy policies Π, and a finite set of agents Ag ⊆ AU from a universe AU , a social
network model (SNM) is a tuple ⟨Ag,A,KB, π⟩, where

• Ag is a nonempty finite set of nodes representing the agents in the social network;
• A is a first-order structure over the SNM. As usual, it consists of a set of domains,

and a set relations, functions and constants interpreted over their corresponding domain.
• KB : Ag → 2F is a function retrieving a set of knowledge of an agent—each piece

with an associated time-stamp. The set corresponds to the facts stored in the knowledge
base of the agent; we write KBi. for KB(i);

• π : Ag → 2Π is a function returning the set of privacy policies of each agent; we
write πi for π(i).

In Def. 2, the shape of the relational structure A depends on the type of the social
network under consideration. We represent the connections—edges of the social graph—
and the permission actions between social network agents, as families of binary relations,
respectively {Ci}i∈C ⊆ Ag×Ag and {Ai}i∈Σ ⊆ Ag×Ag over the domain of agents. We
use {Di}i∈D to denote the set of domains. The set of agents Ag is always included in
the set of domains. We use C,Σ and D to denote sets of connections, permissions and
domains, respectively.

Evolution of Social Network Models

The state of a social network changes by means of the execution of events. For instance,
in Facebook, users can share posts, upload pictures, like comments, etc. The set of
events that users can perform depends on the social network. We denote the set of
events that can be executed in a social network as EVT. We use traces to capture the
evolution of the social network. Each element of the trace is a tuple containing: a social
network model, a set of events, and a time-stamp.

Definition 3 (Trace). Given k ∈ N, a trace σ is a finite sequence

σ = ⟨(SN0, E0, t0), (SN1, E1, t1), . . . , (SNk, Ek, tk)⟩

such that, for all 0 ≤ i ≤ k, SNi ∈ SNRT , Ei ⊆ EVT, and ti ∈ T.

We define Tσ = {t | (SN, E, t) ∈ σ} to be the set of all the time-stamps of σ. We
impose some conditions to traces so that they accurately model the evolution of social
networks. We say that a trace is well-formed if it satisfies the following conditions:

Ordered time-stamps.. Time-stamps are strictly ordered from smallest to largest.

Timed Epistemic Knowledge Bases for Social Networks 189

Accounting for Events.. The definition has to account for events being explicit in
the trace. Let −→ be a transition relation defined as −→ ⊆ SNRT ×2EVT×T×SNRT . We
have ⟨SN1, E, t,SN2⟩ ∈ −→ if SN2 is the result of the set of events E ∈ EVT happening
in SN1 at time t. Note that we allow E to be empty, in which case SN2 = SN1. We will
use the more compact notation of SN1

E,t−−→ SN2 where appropriate.

Events are independent.. For each E,t−−→ the set of events E must only contain
independent events. Two events are independent if, when executed sequentially, the
execution order does not change their behaviour. Consider the following two events:
post(Charlie,Bob, ‘‘London′′) (Charlie shares a post containing Bob’s location), and
friendRequest(Alice,Charlie) (Alice sends a friend request to Charlie). Independently
of the order in which the previous events are executed the resulting SNM will have
a new post by Bob, and Charlie will receive a friend request from Alice. On the
other hand, consider now: post(Charlie,Bob, ‘‘London′′) and disallowLoc(Bob) (Bob
activates a privacy policy which forbids anyone to disclose his location). In this case,
if post(Charlie,Bob, ‘‘London′′) is executed first, the resulting SNM will contain the
post by Charlie including Bob’s location. However, if disallowLoc(Bob) occurs before
post(Charlie,Bob, ‘‘London′′), Charlie’s post would be blocked—since it violates Bob’s
privacy policy. These two events are not independent.

More formally,

Definition 4. Given two events e1, e2 ∈ EVT, we say that e1 and e2 are independent
iff for any two traces σ1 and σ2

σ1 = SN0
1

{e1},t−−−−→ SN1
1

{e2},t′−−−−→ SN2
1

σ2 = SN0
2

{e2},t−−−−→ SN1
2

{e1},t′−−−−→ SN2
2

it holds SN0
1 = SN0

2 and SN2
1 = SN2

2.

We can now provide a formal definition of well-formed SNM traces.

Definition 5 (Well-Formed Trace). Let

σ = ⟨(SN0, E0, t0), (SN1, E1, t1), . . . , (SNk, Ek, tk)⟩

be a trace. σ is well-formed if the following conditions hold:

1. For any i, j such that 0 ≤ i, j ≤ k and i < j, it is the case that ti < tj.

2. For all i such that 0 ≤ i ≤ k − 1, it is the case that SNi
Ei+1, ti+1−−−−−−−→ SNi+1.

190 Chapter VII

3. For all e1, e2 ∈ Ei for 0 ≤ i ≤ k, e1 is independent from e2.

We will use TCS to refer to the set of all well-formed PPFRT traces. In order
to be able to syntactically refer to the previous or next social network model, given
a concrete time-stamp, we assume that there exist the functions predecessor (pred)
and next (next). pred : T → T takes a time-stamp and returns the previous time-
stamp in the trace. Since the set of time-stamps is non-Zeno it is always possible to
compute the previous time-stamp. Analogously, next : T → T takes a time-stamp and
returns the next time-stamp in the trace. In ⟨(SN0, E0, t0), (SN1, E1, t1), (SN2, E2, t2)⟩,
pred(t1) = t0 and next(t1) = t2. We define predecessor of the initial time-stamp to be
equal to itsel, i.e., pred(t0) = t0. Similarly, next of the last time-stamp of the trace is
equal to itself, i.e., next(t2) = t2.

Modelling knowledge

It is not a coincidence that KBLRT formulae look very similar to those of the language
Ln originally defined for epistemic logic [29]. We would like to provide users in our
system with the same notion of knowledge. Traditionally, in epistemic logic, the way to
model and give semantics to Kiφ is by means of an undistinguishability relation which
connects all world that an agent considers possible [29]. In particular, when talking
about traces of events the framework used is Interpreted Systems (ISs). In ISs traces
are called runs. A run describes the state of the system at any point in (discrete) time.
An IS I is composed by a set of runs and a undistinguishability relation (∼i)—for
each agent i—which models the states of the system that agents consider possible at
any point in time. Determining whether an agent i knows a formula φ (written in the
language of epistemic logic), for a run r at time m is defined as follows:

(I, r,m) ⊨ Kiφ iff (I, r′,m′) ⊨ φ for all (r,m) ∼i (r′,m′)

where (r,m) and (r′,m′) represent states of I.
Additionally, Fagin et al. proposed an alternative encoding to answer epistemic

queries from a knowledge base consisting in a set of accumulated facts [29][Section
7.3]. Let kb be an agent representing a knowledge base that has been told the facts
⟨ψ1, . . . , ψk⟩ for k ≥ 1 in run r at time t. It was shown in [29][Theorem 7.3.1] that the
following are equivalent:

a) (Ikb, r,m) ⊨ Kkbφ.

b) Mrst
n ⊨ Kkb(ψ1 ∧ . . . ∧ ψk) =⇒ Kkbφ.

c) (ψ1 ∧ . . . ∧ ψk) =⇒ φ is a tautology.

Timed Epistemic Knowledge Bases for Social Networks 191

where Ikb is an IS which models the behaviour of kb and Mrst
n ⊨ φ means that φ is

valid in the Kripke models with an accessibility relation that is reflexive (r), symmetric
(s) and transitive (t). The previous theorem holds not only for a system consisting in a
single knowledge base, but systems including several knowledge bases.

This way of modelling knowledge is very suitable for our social network models. As
mentioned earlier, in a social network model the users’ knowledge is stored in their
knowledge base. Therefore, by using the equivalence in [29][Theorem 7.3.1] we can
determine whether a user knows a formula φ from the conjunction of all the formulae
it has been told, formally,

∧
ψ∈KBi

ψ =⇒ φ.
However, as mentioned earlier, KBLRT is not the same language as Ln. Therefore

we cannot directly apply [29][Theorem 7.3.1] to determine whether a user knows a fact
φ. In the following we described an extended knowledge base which supports all the
components of KBLRT .

Extended Knowledge Bases

An Extended Knowledge Base (EKB) consists in a collection KBLRT formulae without
quantifiers. All domains in a SNM are finite at a given point in time—the might grow
as events occur. On the one hand, regular domains, i.e., Dt in A are assumed to be
finite. Therefore, they can be easily unfolded as a finite conjunction. On the other hand,
the time-stamps domain—though infinite in general—for a given trace Tσ will be finite
because traces are finite. Hence EKBs can be populated with the explicit time-stamps
values that moment in time. Later in this section, we introduce some axioms which will
define how time-stamps are handled. In what follows we introduce the axioms EKBs
use to handle knowledge and belief.

Derivations in EKBs. The information stored in an agent’s EKBs along a trace
determines her knowledge. At a concrete moment in time, an agent’s EKB contains
the explicit knowledge she just learnt. New knowledge can be derived from the explicit
pieces of information in agents’ EKBs. Derivations are not limited to formulae of a
given point in time, but also can use old knowledge. A time window, or simply, window,
determines how much old knowledge is included in a derivation. We write Γ ⊢ (φ,w) to
denote that φ can be derived from Γ given a window w. We provide a set of deduction
rules, DR, of the form

Γ ⊢ (φ,w′)

Γ ⊢ (ψ,w)

meaning that, given the set of premises Γ, ψ can be derived with a window w from φ

in a window w′.

192 Chapter VII

Definition 6. A timed derivation of a formula φ ∈ FKBL given a window w ∈ N, is a fi-
nite sequence of pairs of formulae and windows, FKBL×N, such that (φ1, w1), (φ2, w2), . . . ,

(φn, wn) = (φ,w) where each φi, for 1 ≤ i ≤ n, follows from previous steps by an ap-
plication of a deduction rule of DR which premises have already been derived, i.e., it
appears as φj with j < i, and wj ≤ wi.

In what follows we present the concrete derivation rules that can be used in EKBs
to derive knowledge. We define deduction rules based on well studied axiomatisations
of knowledge and belief together with rules to deal with knowledge propagation.

Knowledge and Belief in EKBs. In EKBs knowledge and belief coexist. So far,
the definition of knowledge that we provided in the previous section only takes into
account the axioms for knowledge. In particular, the axiomatisation S5. Thus, EKBs
can use any of the S5 axioms to derive new knowledge from the conjunction of explicit
facts in the knowledge base.

Fagin et al. provided an axiomatisation for belief [29], the KD45 axiomatisation.
It includes the same set of axioms as S5 —replacing Ki by Bi—except for the axiom
Kiφ =⇒ φ (A3). The difference between knowledge and belief is that believes do not
need to be true—as required by A3 in knowledge. The requirement is that an agent
must have consistent beliefs. It is encoded in the following axiom ¬Bi⊥ (axiom D).

We can summarise the last two paragraphs as follows: Whenever a formula of the
form Kiφ is encountered, axioms from S5 can be applied to derive new knowledge, and
if the formula is of the form Biφ axioms from KD45 can be used instead. Nonetheless,
we are missing an important issue: How do knowledge and belief relate to each other?
To answer this question we use two axioms proposed by Halpern et al. in [39]: (L1)
Kiφ =⇒ Biφ and (L2) Biφ =⇒ KiBiφ.

L1 expresses that when users know a fact they also believe it. It is sound with
respect to the definition of both modalities, since knowledge is required to be true by
definition (recall axiom A3). This axiom provides a way to convert knowledge to belief.
L2 encodes that when agents believe a fact φ they know that they believe φ. Thus
adding an axiom which introduces knowledge from belief—more precisely, introduces
knowledge about the beliefs.

However, the axioms from S5, KD45 and L1, L2 need to be adapted to KBLRT

syntax—which is the type of formulae supported by EKBs. In particular, the modalities
need a time-stamp. All these axiomatisations are defined for models which represent
the system in a concrete time. That is, given the current set of facts that users have,
they can apply the axioms to derive new knowledge (at that time). To preserve this
notion we will simply add the time-stamp t to all modalities. Intuitively, it models that

Timed Epistemic Knowledge Bases for Social Networks 193

Knowledge axioms Belief axioms Knowledge-Belief axioms
A1 All tautologies of first-order logic K Btiφ ∧Bti (φ =⇒ ψ) =⇒ Btiψ L1 Kt

iφ =⇒ Btiφ
A2 Kt

iφ ∧Kt
i (φ =⇒ ψ) =⇒ Kt

iψ D ¬Bti⊥ L2 Btiφ =⇒ Kt
iB

t
iφ

A3 Kt
iφ =⇒ φ B4 Btiφ =⇒ BtiB

t
iφ

A4 Kt
iφ =⇒ Kt

iK
t
iφ B5 ¬Btiφ =⇒ Bti¬Btiφ

A5 ¬Kt
iφ =⇒ Kt

i¬Kt
iφ

Table VII.1: EKB axioms for a trace σ for each t ∈ Tσ.

Knowledge deduction rules axioms

φ is a first-order tautology
Γ ⊢ (φ,w)

(A1)
Γ ⊢ (Kt

iφ,w) Γ ⊢ (Kt
i (φ =⇒ ψ), w)

Γ ⊢ (Kt
iψ,w)

(A2)
Γ ⊢ (Kt

iφ,w)

Γ ⊢ (φ,w)
(A3)

Γ ⊢ (Kt
iφ,w)

Γ ⊢ (Kt
iK

t
iφ,w)

(A4)
Γ ⊢ (¬Kt

iφ,w)

Γ ⊢ (Kt
i¬Kt

iφ,w)
(A5)

Belief deduction rules

Γ ⊢ (Btiφ,w)
Γ ⊢ (Bti (φ =⇒ ψ), w)

Γ ⊢ (Btiψ,w)
(K)

Γ ⊢ (¬Bti⊥, w)
(D)

Γ ⊢ (Btiφ,w)

Γ ⊢ (BtiB
t
iφ,w)

(B4)
Γ ⊢ (¬Btiφ,w)

Γ ⊢ (Bti¬Btiφ,w)
(B5)

Premise deduction rule Knowledge-Belief deduction rules

φ ∈ Γ

Γ ⊢ (φ,w)
(Premise)

Γ ⊢ (Kt
iφ,w)

Γ ⊢ (Btiφ,w)
(L1)

Γ ⊢ (Btiφ,w)

Γ ⊢ (Kt
iB

t
iφ,w)

(L2)

Table VII.2: EKB deduction rules for a trace σ for each t ∈ Tσ.

if users have some knowledge at time t they can derive knowledge using the previous
axioms, and, this derived knowledge, belongs to the same time t. Table VII.1 shows
the complete list of axioms that can be applied given a trace σ for each time-stamps
t ∈ Tσ.

In order for these axioms to be used in timed derivations we now express them as
deduction rules as shown in Table VII.2. Since all derivations are performed for the
same t they all share the same window w.

As mentioned earlier, an EKB models the knowledge and beliefs of a user at a given
moment in time. We encode this notion by adding an explicit Kt

i to every formula
in a user’s EKB. Formally, we say that users in a trace σ are self-aware iff for all
t ∈ Tσ If φ ∈ EKBσ[t]i then φ = Kt

iφ
′. By assuming this property we can syntactically

determine the time t when some knowledge φ enters an EKB. In what follows we assume
that all well-formed traces are composed by self-aware agents.

194 Chapter VII

Example 1. Consider the following EKB from a trace σ of an agent i at time t.

Kt
i (∀t′ · ∀j : Ag

t′ · eventt′(j, pub) =⇒ loct
′
(j, pub))

Kt
i eventt(Alice, pub)

EKBσ[t]i

In this EKB i can derive using the axioms in Table VII.1 that Alice’s location at
time t is a pub, i.e., loct

′
(Alice, pub). Here we show the steps to derive this piece of

information. We recall that quantifiers are unfolded when added to the knowledge base.
Therefore, given Tσ = {t0, t1, . . . , t}

Kt
i∀j : Ag

t0 · eventt0(j, pub) =⇒ loct0(j, pub) ∧
Kt
i∀j : Ag

t1 · eventt1(j, pub) =⇒ loct1(j, pub) ∧
. . .

Kt
i∀j : Ag

t · eventt(j, pub) =⇒ loct(j, pub)
where each of these are also syntactic sugar, for instance, given Agt = {j1, j2, . . . , jn}

for n ∈ N
Kt
i eventt(j1, pub) =⇒ loct(j1, pub) ∧

Kt
i eventt(j2, pub) =⇒ loct(j2, pub) ∧

. . .

Kt
i eventt(jn, pub) =⇒ loct(jn, pub)

The predicate eventt(j, pub) means that j attended an event at time t in a pub. The
predicate loct(j) means that j’s location is a pub. Thus, the implication above encodes
that if i’s knows at t that if an agent is attending an event in a pub at time t, her
location will be a pub. Moreover, i knows at time t that Alice is attending an event
at the pub, eventt(Alice, pub). As mentioned earlier, in epistemic logic, knowledge is
required to be true. Therefore, eventt(Alice, pub) must be a true predicate. From this we
can infer that Alice ∈ Agt. Because of this, Kt

i eventt(Alice, pub) =⇒ loct(Alice, pub)
must also be present in EKBσ[t]i . Applying A2 to Kt

i eventt(Alice, pub) and the previous
implication we can derive Kt

i loct
′
(j, pub) as required.

Handling time-stamps. In EKBs users can also reason about time. For instance, if
Alice learns Bob’s birthday she will remember this piece of information, possibly, forever.
Nonetheless, this is not always true, some information is transient, i.e., it can change
over time. Imagine that Alice shares a post including her location with Bob. Right after
posting, Bob will know Alice’s location—assuming she said the truth. However, after a
few hours, Bob will not know for sure whether Alice remains in the same location. The
most he can tell is that Alice was a few hours before in that location or that he believes

Timed Epistemic Knowledge Bases for Social Networks 195

that Alice’s location is the one she shared. We denote the period of time in which some
piece of information remains true as duration.

Different pieces of information might have different durations. For example, some-
one’s birthday never changes, but locations constantly change. Duration also depends
on the OSN. In Snapchat messages last 10 seconds, in Whatsapp status messages last 24
hours and in Facebook posts remain forever unless a user removes them. Due to these
dependences we do not fix a concrete set of properties regarding time-stamps. Instead
we keep it open so that they can be added when modelling concrete OSNs in PPFRT .
Concretely, the parameter ω introduced at the beginning of Section VII.2 corresponds
to information duration for a particular OSN modelled in PPFRT .

Using the window w—from timed derivations, see Def. 6—we define the following
deduction rule encoding knowledge propagation. Given t, t′ ∈ Tσ where t < t′:

Γ ⊢ (Kt
iφ,w − (t′ − t))

Γ ⊢ (Kt′

i φ,w)
(KR1)

The intuition behind KR1 is that w is consumed every time knowledge is propagated.
Imagine that Alice knows at time 1 the formula φ, K1

Aliceφ. Using KR1 in a derivation
would allow us to derive, for instance, that she knows φ at a later time, e.g., at time
5, that is, K5

Aliceφ. Note that this derivation requires w to be at least 4, since Alice’s
knowledge of φ is propagated 4 units of time. As usual in when using this type rules,
derivations can be described forwards or backwards. In the latter, the derivation starts
with the conclusion of the rule—that is, we want to derive—and reduce the value of w
every time we access old knowledge. In the former, we start from the premise of the
rule and we increase w accordingly to derive the conclusion. The intuition and ways of
deriving knowledge using KR1 are better illustrated with an example.

Example 2. Consider the sequence of EKBs in Fig. VII.1 of an agent i from a trace
σ where Tσ = {0, . . . , 4}. In this example we show the purpose of the window w when
making derivations. Note that it is not possible to derive Alice’s location only from the set
of facts in a single knowledge base at a time t. Instead it is required to combine knowledge
from different knowledge bases. We use the knowledge recall rule with different windows
to access previous knowledge. As mentioned earlier, intuitively, w determines for how
long agents remember information. Therefore, it is required to find an appropriate value
for w that includes the sufficient knowledge—from all moments in time—to perform the
derivation. In the figure, the red square marks the accessible knowledge for w = 2 and
the blue square for w = 3.

As can be seen in the trace, in order for i to derive event3(Alice, pub) she needs to

196 Chapter VII

combine knowledge from EKBσ[0]i and EKBσ[3]i . Let EKBσi =
∪
t∈Tσ

EKBσ[t]i . First, we
show how to construct a proof forwards, i.e., starting from the premises and a window
of 0, move forward—by increasing the size of w—until the inference can be performed.
In particular, we show that EKBσi ⊢ (K3

loc3(Alice,pub), w) for w ∈ N. Let us start by
applying the rule PREMISE with w = 0,

EKBσi ⊢ (K0
i event3(Alice, pub) =⇒ loc3(Alice, pub), 0)

Recall that the quantifiers in the example are just syntactic sugar. They are replaced
when added to the EKB. Now we use KR1 to combine this knowledge with knowledge
at time 3. In other words, we propagate knowledge from time 0 (K0

i) to time 3 (K3
i).

(KR1)
EKBσi ⊢ (K0

i event3(Alice, pub) =⇒ loc3(Alice, pub), 0)
EKBσi ⊢ (K3

i event3(Alice, pub) =⇒ loc3(Alice, pub), 3)

As stated in the rule the window has been incresed by 3, since 0 = 3 − (3 − 0). We
apply PREMISE again to obtain (EKBσi ⊢ K3

i event3(Alice, pub), 3). As in Example 1
by applying A2 in the previous statements we derive (EKBσi ⊢ K3

i loc3(Alice, pub), 3).
This proof shows that i knows Alices location provided that agents remember information
during 3 units of time.

We show now that a window smaller than 3 makes this derivation impossible. Also
we construct the proof backwards, i.e., starting from the conclusion we try to prove the
required premises. Let us take a largest window smaller than 3, w = 2. We try to show
that EKBσi ⊢ (K3

i loc3(Alice, pub), 2). In order to prove we need to show the following:

(A2)

(EKBσi ⊢ K3
i event3(Alice, pub), 2)

EKBσi ⊢ (K3
i event3(Alice, pub) =⇒ loc3(Alice, pub), 2)
EKBσi ⊢ (K3

i loc3(Alice, pub), 2)

The first premise, (EKBσi ⊢ K3
i event3(Alice, pub), 2), trivally follows by PREMISE. For

the second premise we first try move one step back using KR1, i.e,

EKBσi ⊢ (K2
i event3(Alice, pub) =⇒ loc3(Alice, pub), 1),

since there is no knowledge at time 2, the previous statement cannot be proven. We
apply again KR1 obtaining

EKBσi ⊢ (K1
i event3(Alice, pub) =⇒ loc3(Alice, pub), 0).

Similarly, this statement cannot be proven. Note that the window is 0. Intuitively, it
means that we have access all knowledge that i remembers. Therefore, we have reach a

Timed Epistemic Knowledge Bases for Social Networks 197

K0
i ∀t′ · ∀j : Agt

′
· eventt′ (j, pub) =⇒ loct′ (j, pub)

EKBσ[0]
i

∅

EKBσ[1]
i

∅

EKBσ[2]
i

K3
i event3(Alice, pub)

EKBσ[3]
i

∅

EKBσ[4]
i

Figure VII.1: Sequence of EKBs of agent i for a trace σ where Tσ = {0, . . . , 4}

dead end in our proof tree. KR1 could be applied again, which would give

EKBσi ⊢ (K1
i event3(Alice, pub) =⇒ loc3(Alice, pub),−1).

However, it would not be a valid timed derivation. In Def. 6 we require w ∈ N. Finally,
we conclude that K3

i loc3(Alice, pub) cannot be derived with a window of 2.

Belief propagation. Beliefs cannot be propagated as easily as knowledge. The reason
is that, at some point in the future, new beliefs—contradicting the current set of beliefs
of an agent—can enter an EKB. Therefore, we cannot simply increase the window
during the derivation. Instead we propagate as long as beliefs are consistent.

As mentioned earlier, agents can be conservative or susceptible. It is specified in the
parameter β of the framework (see Section VII.2). Conservative agents reject any new
beliefs that contradict their current set of beliefs. On the contrary, susceptible agents
always accept new beliefs and remove the old ones that contradict them. Here we
present two different belief propagation algorithms which describe how agents behave
when faced with a new belief which is contradictory.

Let σ be a trace with the following set of time-stamp, Tσ = {t0, . . . , tn−1, tn}. We
define EKBσ[t0,tk]i =

∪
t∈{t0,...,tk} EKBσ[t]i for k ∈ N. Also, we introduce the event

enter(Btiφ) meaning that belief φ enter i’s knowledge base at time t. We use this event
to be able to identify the moment where a belief was inserted in an agent’s EKB. As
we will see in the following, determining when a belief enters an agent’s knowledge base
is crucial to propagating beliefs. Independently of the propagation rule of the agent,
both algorithms will try to propagate the accumulated set of beliefs as long as they are
inside the window w. Formally we define this set as Ψtnc =

{Ktn
i B

tn
i ψ | Ktn−1

i B
tn−1

i ψ ∈ EKBσ[tn−1]
i and occurredt(enter(Btiφ)) ∈ EKBσ[tn−w,tn]i }

Intuitively, Ψtnc includes all beliefs from the oldest knowledge base (EKBσ[t−1]
i) that

were inserted at a time t not older than allowed by the time window w. When a belief
φ is inserted in an EKB, the fact enter(Btiφ) is also included thus making the agent
aware of the event of inserting a new belief.

198 Chapter VII

Conservative agents. Conservative agents never change their beliefs. Therefore,
when they start believing some fact, they will not accept its negation. Let be a trace
σ = SNtn−1

e(Btn
i φ),0

−−−−−−→ SNtn where at time tn, agent i is told a belief Btni φ, represented
by the event e(Btni φ). In what follows we describe how EKBσ[tn]i is updated, i.e.,
whether the belief is added or not. A conservative agent i updates her EKB as follows:

EKBσ[tn]
i =

{
Ψtn

c ∪ {Ktn
i Btn

i φ, occurredtn (enter(Btn
i φ))} if (EKBσ[t0,tn−1]

i ∪Ψtn
c ̸⊢ Btn

i ¬φ,w)

Ψtn
c otherwise

All beliefs in Ψtnc are propagated independently of the new belief (Btni φ) that the agent
has been told—conservative agents never reject old beliefs. The new belief only enters
i’s EKB if it is consistent with her previous beliefs (EKBσ[t0,tn−1]

i) and the ones to
propagate (Ψtnc).

Susceptible agents. Susceptible agents always accept new beliefs. If new beliefs are
contradictory to what they used to believe, they, simply, reject their old beliefs. Or,
in other words, these beliefs are not propagated. However, sometimes agents need to
choose which old beliefs they reject. For example, consider that B1

i φ and B1
i (¬φ∨¬ψ).

At time 2, a belief B2
i ψ enters i’s EKB. Since i is susceptible, she accepts the new belief.

Now she needs to choose whether to propagate B2
i φ or B2

i (¬φ ∨ ¬ψ)—accepting both
creates inconsistent beliefs. To address this issue we assume that there exists a total
order among all beliefs to propagate Ψtnc = {β0, . . . , βm} for m ∈ N where βj < βk if
j < k. Intuitively, this order represents the order in which beliefs were told to the agent.
Having βj < βk means that the agent was told first βj and later βk. Consider again

the trace σ = SNtn−1

e(Btn
i φ),0

−−−−−−→ SNtn where at time tn belief Btni φ is about to enter
EKBσ[tn]i . We define the set of propagated beliefs for susceptible agents Γtnc ⊆ Ψtnc as
the largest set of beliefs such that the following conditions hold:

1. EKBσ[t0,tn−1]
i ∪ Γtns ̸⊢ Btni ¬φ;

2. If βj /∈ Γtnc then
(
EKBσ[t0,tn−1]

i ∪ {βk ∈ Γtnc |k > j} ∪ {βj}
)
⊢ Btni ¬φ.

Given the above, a susceptible agent updates her EKB as follows,

EKBσ[tn]i = Γtnc ∪ {Ktn
i B

tn
i φ, occurred

tn(enter(Btni φ))}

Consistency is guaranteed by definition (see item (1) in the conditions for Ψs), since
the rule states that any belief that contradicts φ will not be propagated.

Example 3. At 20: 00 Bob receives a Facebook message from Alice telling him that she

Timed Epistemic Knowledge Bases for Social Networks 199

is at work. That is,

EKBσ[20 : 00]Bob = {K20: 00
Bob B20: 00

Bob loc20: 00(Alice,work)} ∪
{occurred20: 00(enter(B20: 00

Bob loc20: 00(Alice,work)))}.

At 22: 00 Bob checks his Facebook timeline, and he sees a post of Charlie—who is a
coworker of Alice—from 20: 00 saying that he is with all his coworkers—including Alice—
in a pub having a beer. Assuming that at 22: 00 Bob still remembers his belief from
20: 00—i.e., the time window is larger than 2 hours for Facebook—this new information
creates a conflict with Bob’s beliefs. Note that information from Charlie’s post is also
concerned as belief since there is no way for Bob to validate it. Depending on the type
of agent that Bob is there will be two possible updates in Bob’s EKB.

If Bob is a conservative agent, then

EKBσ[22 : 00]Bob = {K22: 00
Bob B22: 00

Bob loc20: 00(Alice,work)}

meaning that the new belief is rejected. Bob will continue believing that Alice is at work.
On the other hand, if Bob is a susceptible agent, he will add this new believe to his

EKB and reject his old belief about Alice being at work, i.e.,

EKBσ[22 : 00]Bob = {K22: 00
Bob B22: 00

Bob loc20: 00(Alice,work)} ∪
{occurred22: 00(enter(B22: 00

Bob loc20: 00(Alice,work)))}.

For all t such that 20: 00 ≤ t < 22: 00 Bob believes that Alice’s location at 20: 00

is work—due to belief propagation, and, after 22: 00, this belief does not propagate to
avoid contradictions.

Semantics of KBLRT (RTKBL)

The semantics of KBLRT formulae is given by the following satisfaction relation ⊨.

Definition 7 (Satisfaction Relation). Given a well-formed trace σ ∈ TCS, agents
i, j ∈ Ag, a finite set of agents G ⊆ Ag, formulae φ,ψ ∈ FKBLRT , m ∈ C, n ∈ Σ,
o ∈ D, a variable x, an event e ∈ EVT, and a time-stamp t, the satisfaction relation
⊨ ⊆ TCS×FKBLRT is defined as shown in Fig. VII.2.

Predicates of type occurredt(e) are true if the event e is part of the events that
occurred at time t in the trace. ∀t quantifies over all the time-stamps in the trace
Tσ, which, as mentioned earlier, is a finite set. For the remaining domains, ∀x : Dt,
the substitution is carried out over the elements of the domain at a concrete time t.

200 Chapter VII

σ ⊨ occurredt(e) iff (SN, E, t) ∈ σ such that e ∈ E
σ ⊨ ¬φ iff σ �⊨ φ
σ ⊨ φ ∧ ψ iff σ ⊨ φ and σ ⊨ ψ
σ ⊨ ∀t · φ iff for all v ∈ Tσ, σ ⊨ φ[v/t]
σ ⊨ ∀x : Dt · φ iff for all v ∈ D

σ[t]
o , σ ⊨ φ[v/x]

σ ⊨ ctm(i, j) iff (i, j) ∈ C
σ[t]
m

σ ⊨ atn(i, j) iff (i, j) ∈ A
σ[t]
n

σ ⊨ pt #»s iff pt #»s ∈ KBσ[t]e

σ ⊨ Kt
iφ iff

∪
{t′|t′<t,t′∈Tσ} KBσ[t

′]
i ⊢ (φ, ω)

σ ⊨ Btiφ iff
∪

{t′|t′<t,t′∈Tσ} KBσ[t
′]

i ⊢ (Btiφ, ω)

Figure VII.2: Satisfaction relation for KBLRT

Remember that each individual domian Dt always contains a finite set of elements.
However, the same domain at different points in time, e.g., Dt and Dt′ , for any t ̸= t′

might contain different number of elements. When checking connections ctm(i, j) and
actions atn(i, j) at time t, we check whether the corresponding relation— C

σ[t]
m and Aσ[t]n ,

correspondingly—of the SNM at time t contains the pair of users in question. Checking
whether a predicate of type pt #»s holds is equivalent to looking into the knowledge
base of the environment at time t. The environment’s knowledge base contains all
predicates that are true in the real world at a given moment in time. For example, “it
is raining in Gothenburg at 19:00” rain19:00(Gothenburg) or “Alice’s location at 20:00
is Madrid” loc20:00(Alice,Madrid). Determining whether an agent i knows φ at time t,
Kt
iφ, translates to checking whether φ can be derived from i’s knowledge base at time

t. In order to determine whether a user believes φ at time t, Btiφ, we check whether
Btiφ is derivable from the knowledge base of the user at time t given the parameter
ω of the framework. This way of defining belief is based on the fact that agents are
aware of their beliefs, recall axiom (L2) in Table VII.1. Therefore if a user believes φ,
i.e., Btiφ, then she must also know that she believes it Kt

iB
t
iφ. Intuitively, KBσ[t]i ⊢ φ

means that “user i knows φ at time t”, given its equivalence to the knowledge operator.
As expected, knowledge derivations are also limited by the parameter ω.

The intuition behind the previous definitions is better illustrated in the following
example.

Example 4 (Snapchat). In this example we model the OSN Snapchat. In Snapchat
there are two main events that users can perform: i) Connect through a friend relation;
ii) share timed messages (which last up to 10 seconds and can include text and/or a
picture) with their friends. Fig. VII.3 shows an example trace for Snapchat. The trace

Timed Epistemic Knowledge Bases for Social Networks 201

K0
Alicepicture0(Bob, pub)

K0
AliceB

0
Aliceloc0(Bob, pub)Alice

Bob

Charlie

SN0

K7
AlicefriendRequest7(Alice,Charlie) Alice

Bob

K7
CharliefriendRequest7(Alice,Charlie) Charlie

SN7

K15
Alicepicture15(Bob,work)

K15
AliceB

15
Aliceloc15(Bob,work)Alice

K15
Bobpicture15(Bob,work)
K15

Bobloc15(Bob,work)Bob

Charlie

SN15

Friendship

friendRequest

Friendship

friendRequest

Friendship

Friendship

{friendRequest(Alice,Charlie)}, 7

{acceptFollowReq(Alice,Charlie),
share(picture,Bob,work)}, 15

Figure VII.3: Example of a Snapchat trace

consists of: A common set of agents Ag = {Alice,Bob,Charlie}. Since Ag does not
change we avoid using the superindex indicating the time-stamp of the domain. Three
SNMs SN0, SN7 and SN15. The subindex of the SNMs indicates their time-stamp.

At time 0, Alice and Bob are friends, i.e., friendship0(Alice,Bob). This is represented
by including the pair (Alice,Bob) in the relation Friendshipσ[0], drawn in the picture
as an arrow between Alice and Bob in SN0. This relation between Alice and Bob does
not change in σ. Moreover, in SN0, Alice can send a friend request to Charlie. It
is depicted as an outgoing dashed arrow from Alice’s node to Charlie’s. Thus, σ ⊨
PCharlie

Alice friendRequest0 holds. Moreover, Alice knows that there is a picture of Bob at
the pub, picture0(Bob, pub). On the other hand, she believes that his location is the pub,
loc0(Bob, pub). The reason for this is because she cannot verify that the picture has not
been modified or she cannot precisely identify the location. However, the existence of
picture0(Bob, pub) can be verified since it is a picture that Alice can see in the OSN.

At time 7, Alice sends a friend request to Charlie. Though in this paper we do
not discuss modelling the behaviour of events, we assume for this example that Alice
can perform this events since he is explicitly permitted.1 After the execution of the

1We refer the reader to [67] for the definition of operational semantics rules for PPF which describe
the behaviour of the events in the OSN.

202 Chapter VII

event both agents know friendRequest7(Alice,Charlie). Note that this event produces
knowledge. This is because the agents can verify that the friend request has occurred.

Lastly, at time 15, Charlie accepts Alice’s request and Bob shares a picture at work.
Note that these two events are independent. If they were to be executed sequentially,
independently of their order, the final SNM would always be equal to SN15. After Bob’s
accepting Alice’s request (Alice,Charlie) ̸∈ FriendRequestσ[15], and (Alice,Charlie) ∈
Friendshipσ[15]. That is, Alice cannot send more friend requests to Charlie, and now
they have become friends. Furthermore, both, Alice and Bob know that Bob shared
a picture at work. Note that, in this case, Bob also knows that his location is work.
Nevertheless, Alice believes it.2 The reason is that, unlikely Bob, Alice cannot confirm
that Bob’s location is work.

We mentioned that Snapchat messages last for up to 10 seconds. Let us assume
w.l.o.g. that all messages last 10 seconds, i.e., ω = 10. Given that, in σ, Alice remembers
Bob picture from 0 to 10. That is,

σ ⊨ ∀t · 0 ≤ t ≤ 10 =⇒ Kt
Alicepicture0(Bob, pub)

Similarly, her belief about Bob location, picture0(Bob, pub), vanishes at time 10. Note
also that, when Charlie accepts Alice’s friend request, he still knows (or remembers) that
Alice sent it. In Snapchat friend request are permanent, but in PPFRT we can choose
whether friend request disappear after a few seconds. It can be done by requiring that
the agent knows that a friend request occurred in order to accept it. In such a case, in
σ, after time 18 Charlie would not be able to accept Alice’s request.

As mentioned earlier, the purpose of PPFRT main goal is expressing privacy policies.
They can be expressed as a formulae in KBLRT . Let Ag and Locs be domains of agents
and locations, respectively. For the purpose of this example we assume that they do
not change and that is why we do not specify the superindex. Alice, who likes keep her
weekends private can write the following policy ∀i : Ag · ∀l : Locs · ∀t · weekend(t) =⇒
(∀t′ · t′ > t =⇒ Kt′

i picturet(Alice, l)). In English it means “Nobody can know Alice
location during the weekend”.

VII.3.3 Properties of the framework

In this section we present interesting properties of our framework, together with a set
of novel derived operators not present in traditional epistemic logics.

2For readability we omit occurred15(enter(B15
Aliceloc15(Bob,work))) in Fig. VII.3 which is included

in EKBσ[15]
Alice .

Timed Epistemic Knowledge Bases for Social Networks 203

To Learn or not to learn; To believe or not to believe. In KBLT we introduced
the learning modality Liφ [69]. It stands for i learnt φ at a moment t when the formula
is being evaluated. Here Liφ, or more precisely, Ltiφ becomes a derived operator.

We say that an agent has learnt φ at time t, if she knows φ at time t but she did not
know it for any previous timestamp. Formally, we define it in terms of Kt

iφ as follows

Ltiφ ≜ ¬Kpred(t)
i φ ∧Kt

iφ.

We can also model when users start to believe something, or accept a belief. To model
this concept we define the acceptance operator. As before, it can be expressed using Bti

Atiφ ≜ ¬Bpred(t)
i φ ∧Btiφ.

Analogously we can express when users forget some knowledge or when they reject a
belief. Intuitively, an agent forgets φ at time t if she knew it in the previous timestamp,
i.e., pred(t)—recall the definition of pred in Section VII.3.2—and in t she does not know
φ, and, analogously, for reject. Formally,

F ti φ ≜ K
pred(t)
i φ ∧ ¬Kt

iφ

Rtiφ ≜ B
pred(t)
i φ ∧ ¬Btiφ.

Temporal modalities. The traditional temporal modalities □ and ♢ can easily be
defined using quantification over timestamps as follows:

□φ(t) ≜ ∀t · φ(t)

♢φ(t) ≜ ∃t · φ(t)

where φ(t) is a formula φ which depends on t.

How long do agents remember?. Agents remember according to the length of the
parameter ω. It can be seen as the size of their memory. Intuitively, increasing agents
memory could only increase her knowledge. We prove this property in the following
lemma.

Lemma 1 (Increasing window and Knowledge). Given σ, t ∈ σ and w,w′ ∈ N where
w ≤ w′.

If EKBσ[t]i ⊢ (Kt
iφ,w), then EKBσ[t]i ⊢ (Kt

iφ,w
′).

204 Chapter VII

Proof. Assume that EKBσ[t]i ⊢ (Kt
iφ,w). By Definition 6, there exists a derivation

(φ1, w1) (φ2, w2) . . . (φn, wn) for n ∈ N such that (φn, wn) = (φ,w). Let α = w′ − w,
since w ≤ w′ it follows that α ≥ 0.

Consider now the following derivation where the same deduction rules as in the
previous derivation has been applied, and α is added to each wi, (φ1, w1 +α) (φ2, w2 +

α) . . . (φn, wn + α). We show now that, if (φ1, w1) (φ2, w2) using a deduction rule R
then (φ1, w1+α) (φ2, w2+α) can also be derived using R, for all R in Table VII.2. We
split the proof in derivation rules which, copy, reduce or introduce w.

• Rules that copy w. These are, A2, A3, A4, A5, K, B4, B5, L1 and L2. If w ∈ N
given that α ≥ 0 it trivially follows that w + α ∈ N which complies with the
conditions of any of these rules. In this case w = w′ therefore the same applies to
w′.

• Rules that reduce w. This is, KR1. In this case w < w′. In order for the
derivation to be correct both w and w′ are in N. Since α ∈ N, it follows that
w + α and w′ + α are in N. Moreover, since α is a constant it also follows that
w −w′ = (w + α)− (w′ + α). From the previous statement we conclude that the
same window increase is required and, therefore the same derivation is performed.

• Rules that introduce w. These are, A1, D and Premise. No conditions are imposed
in the value of w in order to apply these rules. Therefore, if they can be applied
with window w since α ≥ 0 they can also be applied with window w + α.

We can characterise how long agents remember information depending on the pa-
rameters ω and β of the framework. We differentiate for how long agents remember
knowledge or beliefs since the parameter β might influence it.

Lemma 2 (ω knowledge monotonicity). Given σ and t ∈ Tσ. If Kt
iφ ∈ EKBσ[t]i then

for all t′ ∈ Tσ such that t ≤ t′ ≤ t+ ω it holds σ ⊨ Kt′

i φ.

Proof. Assume Kt
iφ ∈ EKBσ[t]i . By premise we can derive (Kt

iφ, 0). Let t′ = t+ ω, by
applying KR1 we can derive (Kt′

i φ, ω). By ⊨ we conclude σ ⊨ Kt′

i φ. Given the above
and by Lemma 1, for all t ≤ t′′ < t+ ω it always possible to derive (Kt′′

i φ, ω).

This parameter give us a lot of flexibility in modelling agents memories. By choosing
ω = ∞ we can model agents with perfect recall, i.e, agents that never forget. Or we can
also ω = 0, i.e., agents who do not remember anything.

When β = conservative memories about beliefs behave in the same way as knowl-
edge.

Timed Epistemic Knowledge Bases for Social Networks 205

Lemma 3 (ω conservative belief monotonicity). Given σ and t ∈ Tσ. If Btiφ ∈ EKBσ[t]i

and B
pred(t)
i φ ̸∈ EKBσ[t]i , then for all t′ ∈ Tσ such that t ≤ t′ ≤ t + ω the following

holds σ ⊨ ¬Kt′

i ¬φ =⇒ Bt
′

i φ.

Proof. The condition Btiφ ∈ EKBσ[t]i and B
pred(t)
i φ ̸∈ EKBσ[t]i ensures that Bpred(t)

i φ

was not propagated. By definition Ψc contains the beliefs that are to be propagated
from pred(t) to t up to the parameter ω. There three cases in which the EKB can be
updated: i) No new information enters EKB; ii) New knowledge enters EKB; iii) A new
belief enter the EKB. We show that the lemma holds for the three previous cases.

i) It trivially follows by the definition of belief propagation and Ψc.

ii) Assume σ ⊨ ¬Kt′

i ¬φ for all t ≤ t′ ≤ t + ω. Then for any new knowledge ψ that
enters i’s EKB it holds ψ ̸= ¬φ, otherwise it holds σ ⊨ Kt′

i ¬φ thus deriving a
contradiction. Hence, by definition of belief propagation it follows that Bt′i φ ∈ Ψc
for all t ≤ t′ ≤ t+ ω and, consequently, σ ⊨ ¬Kt′

i ¬φ =⇒ Btiφ.

iii) Let Bt′i ψ the belief to be introduced for any t ≤ t′ ≤ t+ω. By the definition of belief
propagation, if EKBσ[pred(t′)]

i ∪Ψc∪{Bt
′

i ψ} ⊢ Bt′i ¬φ then EKBt
′

i = EKBpred(t′)
i ∪Ψc

and, since Bt′i ψ ̸∈ Ψc and Bt
′

i ψ ̸∈ EKBpred(t′)
i , it follows Bt′i ψ ̸∈ EKBt

′

i . Hence,
Bt

′

i φ is propagated. Therefore, it holds that σ ⊨ Bt
′

i φ. Otherwise, EKBt
′

i =

EKBpred(t′)
i ∪Ψc ∪ {Bt′i ψ}, since Bt

′

i φ ∈ Ψc it holds that σ ⊨ Bt′i φ.

On the contrary, susceptible agents can reject a belief when exposed to new con-
tradictory beliefs. Therefore, the duration of their beliefs can be limited by an event
introducing new beliefs in the EKBs.

Lemma 4 (ω susceptible belief monotonicity). Given σ and t, t′ ∈ Tσ such that t < t′

and t′ − t ≤ ω. If Btiφ ∈ EKBσ[t]i , Bt′i ¬φ ∈ EKBσ[t
′]

i , Bpred(t)
i φ ̸∈ EKBσ[pred(t)]

i

and B
pred(t′)
i ¬φ ̸∈ EKBσ[pred(t′)]

i , then for all t′′ ∈ Tσ such that t ≤ t′′ ≤ t′ it holds
σ ⊨ ¬Kt′′

i ¬φ =⇒ Bt
′′

i φ.

Proof. The proof of Lemma 3 can easily be adapted for this case by considering only
all timestamps t′′ such that t ≤ t′′ ≤ t′ ≤ t+ ω.

Refined versions of the β can be considered. Here we only studied the two extreme
approaches. It is also possible to consider different ω for different pieces of information.
In any case, the results of the previous lemmas are general enough to capture these
modifications of the framework.

206 Chapter VII

σ ⊨C ∀x.δ iff for all v ∈ Do, σ ⊨C δ[v/x]
σ ⊨C J¬αKsi iff σ ⊨ ¬α
σ ⊨C Jφ =⇒ ¬αKsi iff σ ⊨ φ =⇒ ¬α

Figure VII.4: Conformance relation for PPLRT

VII.4 Writing Privacy Policies
In this section we provide a language for writing privacy polices, PPLRT . In a nutshell
PPLRT is a restricted version of KBLRT wrapped with J Ksi to indicate the owner of
the policy i and its starting time s.

Definition 8 (Syntax of PPLRT). Given agents a, b ∈ Ag, a nonempty set of agents
G ⊆ Ag, timestamps s, t, a variable x, relation symbols ctm(a, b), atn(a, b), pt(#»s), and a
formula φ ∈ FKBLRT , the syntax of the real-time privacy policy language PPLRT is
inductively defined as:

δ ::= δ ∧ δ | ∀x.δ | J¬αKsi | Jφ =⇒ ¬αKsi
α ::= α ∧ α | ∀x.α | ∃x.α | ψ | γ′

ψ ::= ctm(a, b) | atn(a, b) | occurredt(e)
γ′ ::= Kt

iγ | Btiγ
γ ::= γ ∧ γ | ¬γ | pt(#»s) | γ′ | ψ | ∀x.γ

We will use FPPLRT to denote the set of all privacy policies created according to
the previous definition. To determine whether a policy is violated in an evolving social
network, we formalise the notion of conformance for PPLRT .

Definition 9 (Conformance Relation). Given a well-formed trace σ ∈ TCS, a variable
x, a timestamp s, and an agent i ∈ Ag, the conformance relation ⊨C is defined as shown
in Fig. VII.4.

The definition is quite simple, especially compared to that of conformance of PPLT

[69]. If the policy is quantified, we substitute in the usual way. The main body of the
policy in double brackets is dealt with by simply delegating to the satisfaction relation.

Examples

Example 5. Assume Alice decides to hide all her weekend locations from her supervisor
Bob. She has a number of options how to achieve this, depending on what the precise
meaning of the policy should be.

Timed Epistemic Knowledge Bases for Social Networks 207

If the idea she has is to restrict Bob learning her weekend location directly when she
posts it, she can define

δ1 = ∀t · Jweekend(t) =⇒ ¬Kt
Boblocation(Alice, t)K2016-04-16

Alice

where the weekend predicate is true if the timestamp supplied represents a time during
a weekend. This policy can be read as “if x is a time instant during a weekend, then
Bob is not allowed to learn at x Alice’s location from time x”.

This, however, is a very specialized scenario that captures only a small number of
situations. Bob is, for example, free to learn Alice’s location at any point not during the
weekend, or at any point during the weekend when Alice’s location is no longer up-to-
date. Though there might be scenarios where this might be the desired behavior, we can
define a policy that seems much closer to the intuitive meaning of learning someone’s
location on a weekend. Consider

δ2 = ∀t · Jweekend(t) =⇒ ¬∃t′ · (Kt′

Boblocation(Alice, t))K2016-04-16
Alice .

Here, Bob is not allowed to learn Alice’s location from a weekend, no matter when. If
the policy does not get violated, then Alice’s weekend locations will be completely safe
from Bob – on the social network, at least.

Example 6. One of the advantages of PPLRT is the ability to distinguish between the
original time of a piece of information and the time when it should be hidden. Suppose
Diane activates the following policy:

δ1 = ∀t · ∀x : Agt · J¬friendst(Diane, x) =⇒ ¬∃t′ · (Kt
xpostt

′
(Diane))K2016-05-28

Diane

This aims to prevent anyone who is not a friend of Diane’s from learning any of
her posts (here we assume that the friends connection is not reflexive for simplicity,
otherwise the restriction would target Diane herself, too).

Though δ1 may seem reasonable enough, it might be unnecessarily restrictive. Let us
say there is another user, Ethan. Diane becomes friends with Ethan on May 31, so when
her policy is already in effect. Should Ethan be able to learn about Diane’s posts from
when they were not friends? Not according to δ1, which says that no one, regardless of
their relationship with Diane at the moment, is able to learn about her posts from when
they were not friends.

Note that while this may indeed be the desired behaviour, it is, for example, not what
happens on Facebook, where when two users become friends, they are free to access each
other’s timeline including past events and posts. PPLRT is expressive enough to model

208 Chapter VII

this behaviour as well. We can define:

δ2 = ∀t · ∀t′ · ∀x : AgtJ¬friendst(Diane, x) ∧ ¬friendst
′
(Diane, x) =⇒

¬Kt′

x postt(Diane)K2016-05-28
Diane

This policy precisely defines the point in time from when to hide information, y,
as well as the point in time when to hide it, y′. It says, “if Diane is not friend with
someone, then that someone cannot learn her posts, but only if they come from a time
when they were not friends”. Note that δ2 says nothing about users who are currently
friends of Diane’s, which is different from δ1 – here her friends can learn anything,
including past posts from when they were not friends with her.

VII.5 Related work
Specifying and reasoning about temporal properties in multi-agent systems using epis-
temic logic have been previously studied in a number of papers (e.g., in [29] for inter-
preted systems; see also [69] and references therein). More recently, Moses et al. have
extended interpreted systems to enhance reasoning about past and future knowledge.
In [8] they extend Ki with a time-stamp Ki,t, allowing for the expression of properties
such as “Alice knows at time 10 that Bob knew p at time 1”, i.e., KAlice,10KBob,1 p.
Thought there are some similarities between the work by Moses et al. and ours, namely
the use of time-stamps in the knowledge modality and the moving along a trace to place
the evaluation in the “right” place, there are quite a few differences. First, we differ
in the intended use of the logics: Moses et al. use time to model delays in protocols,
whereas our main motivation is to provide a rich privacy policy language for OSNs.
Besides, our logic includes belief and other operators not present in the timed versions
introduced by them, and we have time-stamps associated with propositions. We claim,
however, that KBLRT as at least as expressive as the logics introduced by Moses et al. ,
though this would need to be formally proved and for that we would need to relate our
(non-standard) semantics with interpreted systems. This is left as future work.

As mentioned in the introduction, our work solves the open issues and limitations
described in our previous work [69]. In that paper we introduced PPFT , a temporal
epistemic framework for describing policies for OSNs. PPFT relies on the temporal
epistemic logic KBLT that allows to express temporal constraints using the classical
box and diamond temporal operators. Neither the policy language nor the underlying
logic KBLT have a notion of time: this is only used at the semantic level, allowing to

Timed Epistemic Knowledge Bases for Social Networks 209

move along a social network model trace in order to interpret the temporal operators.
PPFRT strictly extends PPFT , so our work not only addressed the already identified
limitations identified in [69] but also extends that work by allowing the definition of more
modalities (e.g., forget, accept, belief) allowing for a more expressive policy language
and underlying logic. These allow us to define policies for more complex OSNs, like
Snapchat.

Besides the above, it is worth mentioning the work by Woźna & Lomuscio [97] where
TCTLKD s presented. TCTLKD is a combination of epistemic logic, CTL, a deontic
modality and real time. It is difficult to compare our logic KBLRT with TCTLKD
as they use CTL, while we have time-stamps in the propositions. The models used to
interpret formulae in TCTLKD are based on a semantics for a branching logic, being
a combination of timed automata and interpreted systems plus an equivalence relation
for modelling permission. Ours is based on (timed) social network models. Besides we
can also reason about belief.

VII.6 Conclusions
In this paper, we have presented a novel privacy policy framework based on a logic that
offers explicitly support for expressing timestamps in events and epistemic operators.
This framework extends [66, 71], which did not offer any support for time, and [69] which
only had limited support due to the implicit treatment of time. Our framework is based
on Extended Knowledge Bases (EKB). A query to an EKB starts by instantiating a
number of epistemic axioms that handle knowledge, belief and time (the concrete axioms
depend on the OSN instantiation). The deductive proof system give an algorithm to
deduce the knowledge of agents acquired at each instant, and in turn a model checking
algorithm for the logic and a check for privacy policy violations. The explicit time-
stamps allow to define learning and forget operators that capture when knowledge is
acquired. Similarly, one can derive accept and reject operators that model when beliefs
come into existence and are rejected.

The flexibility of the EKBs allows to model different kinds of OSNs in terms of how
the actions affect knowledge and how this knowledge is preserved through time. We
have also sketched how different existing OSNs can be modeled using this flexibility.

Two important avenues for future research are the following. First, many instantia-
tions enable efficient implementations of checking privacy policy violations by exploiting
whether events can affect the knowledge of the agents involved. Once the effect of the
actions is fixed one can prove that a distributed algorithm guarantees the same out-
come as the centralized algorithm proposed here. For example, tweets can only affect

210 Chapter VII

the knowledge of subscribers so all other users are unaffected. Second, once an effective
system to check policy violations is in place, there are different possibilities that the
OSN can offer. One is to enforce the policy by forbidding the action that the last agent
executed, which would lead to the violation. Another can be the analysis of the trace
to assign blame (and correspondingly, reputation) to the agents involved in the chain
of actions. For example, the creator of a gossip or fake news may be held more respon-
sible than users forwarding them. Even a finer analysis of controllability can give more
powerful algorithms by detecting which agents could have prevented the information
flow that lead to the violation. Finally, yet another possibility would be to remove past
events from the history trace of the OSN creating a pruned trace with no violation. All
these possibilities are enabled by having a formal framework like the one presented in
this paper.

211

Chapter VIII

Secure Photo Sharing in Social
Networks
Pablo Picazo-Sanchez, Raúl Pardo and Gerardo Schneider

Abstract. Nowadays, in an ubiquitous world where everything is connected to the
Internet and where social networks play an important role in our lives, security and
privacy is a must. Billions of pictures are uploaded daily to social networks and, with
them, parts of our private life are disclosed. In this work, we propose a practical solution
for secure photo sharing on social network with independence of its architecture which
can be either centralised or distributed. This solution solves the inconsistencies that
appear in distributed social network as a consequence of treating photos and access
policies separately. Specifically, we solve this open problem by attaching an access
policy to the images and thus, each time a photo is re-shared, the access policy will
travel together with the image.

212 Chapter VIII

Secure Photo Sharing in Social Networks 213

VIII.1 Introduction
Online Social Networks (OSNs) such as Facebook, Twitter or Instagram are only a few
examples of the most used Internet applications all over the world. A recent study
shows that Facebook [88] has at least 1.71 billion active users per month. Moreover,
according to that study, it is estimated than more than 300 million photos per day are
being uploaded.

Most OSN users have the tendency to share photos. There are several works that are
focused on the reason for sharing personal information such as photos on OSNs from a
sociological perspective [24, 50, 52, 58]. These studies found out that most users share
photos on OSNs to seek affection. Nevertheless, users are aware of the risks of their
actions which might reveal personal aspects of their lives. Due to this, users usually
weight the risks of disclosing private information against benefits of not doing it.

Both security and privacy issues have been pointed out in several papers as unsolved
and challenging problems [48]. Specifically, in the privacy domain, some authors have
addressed photo sharing1 as an open problem in OSN [90, 48].

This problem arises when users take photos they have access to and increase the
audience of the photo by re-sharing it. For instance, imagine that Alice shares a photo
with her friends, and later, Bob—who is a friend with Alice—re-shares it with his
own friends, thus increasing the audience to his own friends as well. Essentially, this
circumstance is given because the privacy policies that Alice has previously defined are
applied only to her public domain and are not attached to the objects she shares out.

OSNs can be classified into centralised and distributed social networks. In cen-
tralised OSNs there is only one instance which has a global view of the state of the
system and where all information is handled. On the other hand, in Distributed Online
Social Networks (DOSNs), there are different servers where each one of them has its
own instance of the OSN and has the ability of sharing and exchanging information
between them.

Facebook, Twitter or Instagram are some examples of centralised OSNs. However,
under the hood, the store infrastructure of these OSNs is geographically distributed. For
instance, Facebook developers have deployed a distributed data store for the resources
of the OSN [11, 65]. This storage system is based on a master/slave architecture which
replicates the information geographically so that it is accessed efficiently. Bronson
et al. pointed out in [11] that their storage system explicitly favours availability and
per-machine efficiency over strong consistency. They also remarked the problem of
expensive read-after-write consistency, i.e., the cost of forwarding writes to the master
and later being replicated, and the existence of time elapses before all slaves have a

1It is also known as photo re-sharing since photos can be shared many times and by different users.

214 Chapter VIII

consistent information. In the context of photo sharing, it might originate problems
while updating the audience of a photo. Imagine that Alice initially shares a photo
with her friends, but after a while she decides to restrict the audience to her family and
rewrites the access control policy of the photo. Before this policy is replicated in the
whole system—a few milliseconds according to [11]—there will be slaves which would
show Alice’s photo to the incorrect audience.

Diaspora [22] is the most popular example of DOSNs with more than 0.6 million
users. Moreover, in Diaspora, each server is called a pod and has its own database. Thus,
this architecture prevents a single party to have all the users’ personal information. In a
DOSN when users from different nodes of the system share information, it is replicated
on each node. This highly distributed architecture makes very hard to keep consistency
between pods and it directly affects the photo sharing problem we are tackling here.
Furthermore, in Diaspora after a user has shared a photo, it is not possible to update
its access control policies. This is because once the photo is replicated, a static access
control policy is sent to specify the audience of the photo in that pod. Due to this
unpleasant restriction, inconsistencies when a user updates the relationships with users
from different pods may appear. For instance, imagine that Alice shares a photo with
her friends. Bob, who signed up in a different pod, gets access to the photo, given that
it was replicated to his pod and the access control policy allows him to see it. A few
days afterwards, Alice decides to end her friendship with Bob. One would expect Bob
to not be able to see the photo shared with Alice’s friends. However, the unfriend event
is not replicated to all pods where the photo was sent, and therefore Bob continues
having access to the photo.

Note that in both architectures the problem arises from having two separate entities,
i.e., the photo and its access control policy, and inconsistencies while updating the access
control policy of a photo. Here we propose a solution where access control policies are
“stuck” to the photo. Therefore when a photo is replicated in different nodes, its access
policy travels together with it.

Contributions. We focus on how to share private images on DOSN in a secure
way. To do so, we have developed a solution where the access policy is attached to
the image by using Attribute Based Encryption (ABE), instead of defining a common
access control policy in the generic privacy settings, e.g., “only family” or “colleagues
and friends”. Moreover, we have tested our proposal on Diaspora to demonstrate its
viability on both modes centralised and decentralised2. As far as we know, this is
the first solution which allows different images formats such as PNG, JPEG or TIFF.
Finally, by using the centralised mode of Diaspora, we show how this could be easily

2Accessible online at http://ppf-diaspora.raulpardo.org

http://ppf-diaspora.raulpardo.org

Secure Photo Sharing in Social Networks 215

deployed into real applications such as Facebook, Twitter or any other OSN.
The rest of this paper is organised as follows: Section VIII.2 introduces background

knowledge on ABE. In Section VIII.3 we present our system design and the core of
our proposal. Section VIII.4 presents the results and the experiments we have run. In
Section VIII.5 we give an overview of works on OSNs from the security and privacy
photo re-sharing point of view, and present a comparison with our approach. We
conclude and describe future work in the last section.

VIII.2 Preliminaries
For completeness and readability, this section provides a brief overview of the crypto-
graphic primitives and security assumptions used throughout the paper.

VIII.2.1 Access Structure
Let U be the attribute universe and A a non-empty collection of attributes {Att1, Att2,
. . . , Attn}, with Atti ∈ {0, 1}n. A is an access structure over U where the sets specified
by A are called the authorised sets. Notice that each time that new users join the
network, a set of attributes is assigned to them.

Moreover, an access structure A ⊆ U is monotone if ∀B,C ⊆ U if B ⊆ A and B ⊆ C

then C ⊆ A.

VIII.2.2 Linear Secret Sharing Scheme
Informally, a secret-sharing scheme among a dealer and a set of parties is an algorithm
in which a secret k is distributed to a set of i parties in such way that only authorised
subsets of parties can reconstruct the secret by pooling the shares of the authorised
parties, while unauthorised subsets will learn nothing about the secret. Additionally,
when the secret is a random vector chosen over Zp is called linear secret sharing scheme.

Furthermore, we assume that when an access structure A is given as a monotonic
boolean formula over a set of attributes, there is a polynomial time algorithm that
translates it to the matrix access policy [46]. Formally, let p be a prime number and
U the attribute universe, a secret-sharing scheme Π with domain of secrets Zp realising
access structures on U is linear over Zp if:

• The shares of a secret k ∈ Zp for each attribute form a vector over Zp;
• There exists an l×n matrix M ∈ Zl×n, called the share-generating matrix, where

for all x = 1, . . . , l, the x-th row ofM is labelled by a function ρ(x) (from {1, · · · , l}
to U). Additionally, during the shares generation, if we consider the column vector
v = (k, r2, . . . , rn)

t, where r2, . . . , rn ∈ Zp are randomly chosen, then the vector

216 Chapter VIII

of l shares of the secret k according to the Π is Mv ∈ Zl×1
p . The share (Mv)x

belongs to ρ(x).

VIII.2.3 Multi-Authority Attributes

Since our solution uses the Multi Authority-Attribute Based Encryption (MA-ABE)
scheme proposed in [79], we do assume that there is a computable function T which links
each attribute U to a unique authority φ of the set of authorities Uφ i.e., T : U → Uφ.
Moreover, this function creates a second labelling of rows in the policy (A,ρ), which maps
rows to attributes by T(ρ(x)). We additionally follow the same notation introduced
in the original paper where the attributes are defined according to the next pattern:
[attribute-id]@[authority-id].

VIII.2.4 Bilinear Pairings

Informally, a pairing function is a function that associates each pair of values of a given
set with a single value of the set. A bilinear parting function is a pairing function that
satisfy bilinear, non-degenerate, efficient and symmetric properties. More formally, let
G and GT be two multiplicative cyclic groups of the same prime order p, g a generator
of G, and e : G×G → GT a pairing function satisfying the following properties:

• Bilinear: ∀u, v ∈ G and a, b ∈ Zp; we have e(ua, vb) = e(u, v)ab.
• Non-degenerate: e(g, g) ̸= 1, i.e., the identity element of GT .
• Efficient: there is an efficient algorithm to compute e(u, v),∀u, v ∈ G.
• Symmetric: e is symmetric, i.e., e(ga, gb) = e(g, g)ab = e(gb, ga).
It is important to mention that both authorities and users are provided with a

unique identifier GID which is mapped by a function H to an element in the group G,
i.e.,H : GID → G. Additionally, we define another function F that translates attributes
to elements in a group G, i.e., F : Att→ G.

VIII.2.5 Security Assumptions

Similarly to [79], the security of our proposal relies on the q-type assumption (q-DPBDHE2
in short) which basically is a slight modification of the q-Decisional Parallel Bilinear
Diffie-Hellman Exponent Assumption [95]. The following definition has been previously
demonstrated in [95], so we encourage the reader to check the full security proof.

Let a, s, b1, · · · , bn ∈ Zp be randomly chosen and g a generator of G of prime order
p. If an adversary A is provided with {G, p, e, g, gs} ∪D where D is:

Secure Photo Sharing in Social Networks 217

D =

({
ga

i
}
i∈[2q]
i̸=q+1

,
{
ga

ibj
}
(i,j)∈[2q,q]
i ̸=q+1

,
{
gs/bi

}
i∈[q]

,
{
gsa

ibj/bj′
}
(i,j,j′)∈[q+1,q,q]

j≠j′

)

for any probabilistic algorithm B, the advantage of A in solving the q-DPBDHE2 prob-
lem is negligible i.e., this assumption relies on the fact that the probability of distin-
guishing the bilinear pairing e(g, g)saq+1 from a random element R ∈ GT is negligible:

Advq−DPBDHE2
B =

∣∣∣Pr [B(D, e(g, g)saq+1

) = 0
]
− Pr [B(D,R) = 0]

∣∣∣ ≤ ϵ

VIII.2.6 MA-ABE Algorithms

The MA-ABE scheme is mainly based on four different algorithms: GlobalSetup, AuthSetup,
KeyGen, Encrypt and Decrypt. In the following we summarise the five algorithms (for
a more detailed description check [79]):

• GlobalSetup(1λ)→ GP . This method requires a security parameter λ. It outputs
the global parameters GP = {p,G, g,H,F ,U ,Uφ}.

• AuthSetup(GP , φ)→ {PKφ, SKφ}. This algorithm generates both a public and
a private key for each one of the authorities.

• KeyGen(GID, φ, Att, SKφ, GP)→ SKGID,Att. This method takes as input the
user’s GID, the authority φ, the attribute Att, the secret key of the authority
SKφ and the general parameters GP and it outputs the user’s secret key for a
given attribute Att —controlled for the authority φ.

• Encrypt(M, T , {PKφ}, GP)→ CT. This algorithm is run by the users and it
receives as input the message to be encrypted M , the access policy T = (A, ρ),
the public keys of the authorities {PKφ}, and the general parameters GP . It
outputs the ciphertext CT (ciphered under the access policy T) together with T .

• Decrypt(CT, {SKGID,Att}, GP)→M . When a user wants to decrypt a ciphertext,
she runs this algorithm. The GP , the ciphertext CT and all the secret keys of that
user SKGID,Att (to recover the shares of the access matrix) should be provided to
get the plaintext.

VIII.3 System Design

In this section we explain in detail our proposed solution for re-sharing photos in DOSNs.
Concretely, we describe the design we implemented in Diaspora.

218 Chapter VIII

VIII.3.1 Diaspora’s Architecture and Assumptions

As mentioned in the introduction, Diaspora is a very popular DOSNs. The source of
its popularity lies on a distributed architecture which prevents a single party to control
users’ data. Moreover, Diaspora can work as a centralised social network if there is only
one pod in the system.

The distributed architecture of Diaspora consists of pods. A pod is a server which
runs an instance of Diaspora’s source code. In order for users to join Diaspora they
can either join an existing pod or create their own. Every pod has its own database,
therefore when users join a pod, their information is not available to everyone. Moreover,
only the owner of the pod has direct access to the information of the database.

Users can connect with other users from the pod they joined as well as users who
signed up in other pods. As usual in OSNs, they can define connection relations to
classify their contacts such as friends, acquaintances, family and so on. Using these
relations, users can define the audience of their information, i.e., posts, photos, polls,
etc. When information is shared with users from different pods it needs to be replicated.
For example, when a set of photos are accessed in different pods then they are replicated
in the databases of each one of the involved pods. After the photo is replicated, the
access control policies (of the target pod) are updated to determine which users in the
pod can access it. If the owner of the pod were to update the photo audience, the access
control policies should be updated in all the pods where the photo was distributed to.

Note that this approach requires distributing the photo and (separately) the access
control policy. In this way, consistency errors can easily appear, e.g., if the photo is
successfully distributed but there is an error while distributing the access control policy.
An additional problem is updating the policies of a photo. If a user decides to update the
audience of a photo from her friends to nobody, this policy must be transmitted to all
the pods where the photo has been replicated. As before, it can originate inconsistencies,
for instance, when a pod with a replica of the photo loses connectivity. Currently in
Diaspora it is not possible to update the access control policies of a photo after sharing it.
This is, probably, because of the difficulties to enforce consistency in such a distributed
environment. The previous example can be seen in Figure VIII.1.

Finally, in our proposal we assume the following: i) the KeyGen algorithm is only
run by the pods of Diaspora and thus they are trustworthy; ii) photos can be stored
either in the pods or in public repositories so it is not mandatory to be secure; and
iii) there is a function named getAtt that given a user, it returns the set of a attributes
of the user from all the pods in the network.

Secure Photo Sharing in Social Networks 219

Alice Bob
friend

friend family colleague

Gothenburg

Figure VIII.1: DOSN example.

VIII.3.2 MA-ABE in Diaspora

In our solution we propose to attach the “access control policies” to the photo by using
a decentralised version of ABE. Classical ABE approaches are based on a centralised
assumption where a Trusted Party (TP) is in charge of distributing the keys of the
scheme and sets up the system. However this is infeasible because of two main problems:
1) the TP has the power to decrypt everything in the system and 2) there is no practical
solution if there are n-different authorities running the same cryptographic schema and
users from different authorities want to share information with them.

In a nutshell, our approach consists in encrypting (parts of) the photo with a policy
which specifies the attributes that other users must possess in order to see the encrypted
parts. In what follows we provide a detailed description of our design of photo sharing
in Diaspora based on MA-ABE.

Attributes in Diaspora. We define the attribute universe, U , to be the set of all
possible connections between users. For instance, in a pod with only two users, Alice
and Bob, and the friend relation, the universe of attributes is U = {friend(Alice),
friend(Bob)}. The attribute friend(Alice) will be granted to users that Alice marked as

220 Chapter VIII

friends. In general, given a set of users US and a set of connections C, the shape of U
is as follows: U = {c(u) | ∀u ∈ US,∀c ∈ C}.

The universe of attributes in the system is not centralised. Due to Diaspora’s dis-
tributed architecture, the universe of attributes is composed by the attributes in each
pod. Let UChalmers and UGU be the universe of attributes of the Diaspora pods of
Chalmers University and the University of Gothenburg (GU), respectively. We say that
the universe of attributes in Gothenburg is UGBG = UChalmers ∪ UGU. We use the
same notation to denote the set of users USGBG = USChalmers ∪ USGU and the set of
connections in Gothenburg pods CGBG = CChalmers ∪ CGU.

In this way, diaspora pods act as authorities which grant attributes to users. Deter-
mining whether a user has an attribute can be easily checked by querying the database
of the pod. Note that users might have attributes which belong to different pods, e.g.,
Alice (from the Chalmers pod) can mark Bob (from the GU pod) as friend. There-
fore, Bob will have attributes that come, not only from the GU pod, but also from
the Chalmers pod. We use the same notation as in the original definition of MA-ABE
in [79] to specify the provenance of an attribute, e.g., friend(Alice)@Chalmers. This
example can be seen in Figure VIII.1.

Key Generation. Initially, when users join Diaspora, they have no connection to
other users. Thus, they possess no attributes. As they interact with the system they
start to create new connections, and consequently, grant (and be granted with) new
attributes. As we mentioned in the preliminaries section, there exists a KeyGen algo-
rithm which given the attributes Att1, . . . ,Attn of a user, her GID and some additional
parameters, it produces the corresponding secret keys, SKGID,Att1 . . . ,SKGID,Attn for
n ∈ N. Nevertheless, note that the set of attributes that a user has is dynamic, i.e., it
will change as users interact with each other. Therefore, a very important question to
answer is: When should the key generation step be carried out?

We chose to perform the key generation algorithm only when the set of attributes of
a user changes. Checking a change in the set of attributes of a user requires performing
a broadcast call to all pods in the network. We use a function getAtt : US → 2U

which given a user, it returns the set of attributes posses by the user in any pod in the
network. Afterwards, we execute KeyGen for the new attributes of the user—in the
corresponding pod—and remove the keys from attributes that might have been revoked3.
Though executing getAtt is not computationally expensive, it requires communication
between pods and might introduce delays, therefore it is important to minimise its use.
Having an updated set of attributes is only necessary when decrypting photos since the

3We discuss other approaches to attribute revocation proposed in the literature in Section VIII.5.

Secure Photo Sharing in Social Networks 221

New Designs

(a) Original

New Designs

(b) Encrypted

Figure VIII.2: Sample photo with and without encrypted area.

set of attributes that a user has determines which parts of the photo that are visible.
Therefore, in order to reduce the overhead of this operation to the minimum, we

only execute getAtt—and the corresponding calls to KeyGen—after receiving a set of
photos to show. This occurs, for instance, every time users access their stream of posts,
or whenever they access a particular photo. Encrypting a photo does not require these
secrets key (see Section VIII.2). It only requires having access to the plain attributes
the user will use for the policy. As mentioned earlier, this attributes are easily accessible
by querying the database.

Attaching policies to photos. In the same way that users can now choose the
audience of a photo, in our proposal users choose the attributes that other users must
have in order to access a photo. Moreover, we let users grab the area of the photo
that they want to protect and the actions that can be performed with the photo e.g.,
re-share, like, comment, etc. This information constitutes the access policy, T . The
photo to protect together with T —and, as before, some additional parameters, see
Section VIII.2—are the input parameters of the encrypt algorithm, which returns a
ciphertext CT. This ciphertext is distributed in the system and it contains both the
picture and the access policy.

Example 1. Imagine that the department of vehicle’s design from Chalmers decides
to use Diaspora to share the photo shown in Figure VIII.2a. However, this photo con-
tains some parts that are still pending of the patent’s decision and the researchers
only want their colleagues to see the final design. In our system, researchers can

222 Chapter VIII

select the part of the photo—where some compromised design appears—and encrypt
it with the attribute colleague(Departmentdesign)@Chalmers. Later users with the at-
tribute colleague(Departmentdesign)@Chalmers will be able to decrypt the photo and see
Figure VIII.2a and the remaining users will see Figure VIII.2b.

Several access policies can be attached to a photo. The only restriction we impose
is that encrypted areas cannot be re-encrypted. For instance, let Alice be an engineer
working at the Swedish vehicle manufacturer Ovlov, and also collaborating with the
department of vehicle’s design at Chalmers. She decides that there are some parts
of the image that the researchers at Chalmers shared (Figure VIII.2b) that are still
visible but should only be accessible by Ovlov employees. In other words, some areas of
Figure VIII.2b that were not encrypted by Chalmers researchers. Therefore, she decides
to encrypt some of those parts and share the photo again. The resulting ciphertext will
allow users with the attribute colleague(Departmentdesign)@Chalmers to only see some
parts of the photo, users with the attribute employee(Ovlov)@Ovlov to see others parts
of the image, and users with both attributes to see the complete photo.

Implementation. We have implemented a prototype of this system in our own Di-
aspora pod4. This prototype allows users to select the area of any of photos they have
access to, and encrypt it with the access policy “Only my friends can see this area”—we
plan to offer users the possibility to choose among other policies, such as friends of
friends, colleagues, family or any other connection they have defined. It is not required
to be the owner of the photo to be able to encrypt it. For instance, Alice can share
with her friends a photo together with Bob. Later Bob—who is part of the audience of
the photo—will be able to select part of the area of the photo that he considers private
and encrypt it so that only his friends can see it. As a result, the friends of Alice who
are also friends with Bob will be able to see the whole photo. On the other hand, the
friends of Alice who are not friends with Bob will only see the non-encrypted parts of
the photo.

VIII.4 Evaluation
In this section we show different experiments that have been run in order to test our
solution to demonstrate that it can be deployed in Diaspora and thus, the security of
this DOSN would improve considerably. Additionally, our proposed solution is open
source and can be downloaded online5.

4https://ppf-diaspora.raulpardo.org
5https://github.com/raulpardo/ppf-diaspora/tree/abe-photos

https://ppf-diaspora.raulpardo.org
https://github.com/raulpardo/ppf-diaspora/tree/abe-photos

Secure Photo Sharing in Social Networks 223

We have run the simulations 10 times and we have computed the time average.
Additionally, we have deployed the solution in a real scenario using the Amazon Web
Services (AWS) architecture. All AWS instances are catalogued as t2.xlarge in such
environment. The characteristics in term of hardware are: 4 virtual Intel Xenon CPU
with 16GB of RAM with no Elastic Block Store (EBS) storage system. Regarding the
software, all instances are running a x64 architecture under Ubuntu 12.04 Operating
System (OS). The generated JSON files of the systems are in average: 4Kb (users’
secret keys); 401kb (ABE’s global parameters); 490Kb (authorities’ keys) and for the
CT some samples—which depend on the size of the photo to encrypt—are shown in
Figure VIII.4 (in the worst case, i.e., encrypting the whole area of the photo).

Figure VIII.3 shows how ABE behaves when different amount of attributes take
place when both algorithms encryption and decryption are run over an entire image of
800× 574 pixels. In Figure VIII.3a we have fixed the number of attributes in the policy
to 3, i.e., |T | = 3. On the other hand, in Figure VIII.3b we have fixed the number of
attributes in the universe to 100, i.e.,|U| = 100. From these plots, it is interesting to
see that the number of attributes do not affect to the performance and thus, taking
into account that we have run our experiments in the worst case (encrypting the whole
image), all results under 2 seconds in the decryption algorithm can be considered as
good results. Finally, we can conclude that our distributed solution for photo re-sharing
will perform perfectly when the number of attributes in the policy T is no higher than
13 attributes.

(a) Fixed |T | = 3

3 4 5 6 7 8 9 1011121314

0.4

0.45

0.5

Number of Attributes in U .

T
im

e
(s
)

encryption decryption

(b) Fixed |U| = 100

1 2 3 4 5 6 7 8 9 101112

0.5

1

1.5

Number of Attributes in T .

T
im

e
(s
)

encryption decryption

Figure VIII.3: Encryption and Decryption time in a 800x574 image.

224 Chapter VIII

We have run one more experiment to show how the size of the ciphertext CT is
independent of both the numbers of attributes in the systems and the length of the
access policy T . However we have observed that the size of the CT generated is hardly
dependent of both the photo’s resolution and logically the selected area to be encrypted.
In this experiment, we have used different images resolution and we have cyphered all
the image –which rarely occurs– to be in the worst case. In this point, it is important
to remark that Facebook re-sizes the images, and the widest side of image does not
exceed 2048 pixels. In the Figure (VIII.4) can be seen that the generated CT depends
on the resolution of the image. It was expected, because the larger the image is, the
larger the area to cypher is. We have additionally tested if the size of the generated
CT depends on either the number of attributes on the system U or on the number of
attributes involved in the access policy T and we have realised that the size remains
constant.

25
0x
27
0

80
0x
57
4

10
00
x1
00
0

18
00
x1
20
0

15
30
x2
00
0

0

5

10

M
b
of

th
e
C
T

Figure VIII.4: CT vs Resolution image.

VIII.5 Related Work
Despite the fact that there are several works that try to guarantee both security and
privacy on photos, only few proposals specifically focus on DOSNs [4, 13, 19, 64, 77, 99,
101] and only a subset where ABE is used [4, 64, 99].

Nilizadeh et al. proposed a DOSN called Cachet [64] . The main characteristic of
this schema is that both ABE and a symmetric encryption are used together. Basically,
the secret key is encrypted using ABE and only those users that satisfy the policy will

Secure Photo Sharing in Social Networks 225

get the secret key and decrypt the content. This architecture is similar to the one
proposed by Baden et al. some years before in [4].

Recently, a work published by Yuan et al. in [99] proposed to encrypt an image
under an access policy by using an ABE scheme. This proposal uses three different
encryption schemes: symmetric encryption, RSA and Ciphertext Policy-Attribute Based
Encryption (CP-ABE). Symmetric encryption, in particular AES, is used to encrypt the
areas of the image. The RSA algorithm is used to encrypt a secret key for a given user.
Finally, CP-ABE is used to check who can access to a given secret key in order to
decrypt a given photo.

ABE it is commonly used as an encryption scheme to share the secret key of a
symmetric encryption such as Advanced Encryption Standard (AES). This is especially
useful because symmetric encryption performance is significantly lower than any other
public encryption schema. Additionally, by using this technique the size of the cipher-
text produced by the ABE remains always constant.

However, using symmetric encryption to hide some area of the picture and ABE for
encrypting that secret key has one problem when it is applied to a OSN: once a user
has access to decrypt that piece of information, she might share the secret key and thus
no more security will be provided. So, unlike [4] and [64] we do not rely on symmetric
encryption together with ABE.

Our proposal, in comparison to [99], contemplates both DOSNs and OSNs. We
do not need to include two more parties in the architecture such as a key server and
a Certified Authority (CA). We do not need to create a dedicated application on the
client’s side to view the encrypted photo. We support both, JPEG, PNG and TIFF
files. Additionally, we have tested our proposed solution based on different attributes
on both the universe U and in the access policy T .

Furthermore, it is worth mentioning that classical ABE approaches are based on a
centralised assumption where a TP is in charge of distributing the keys of the schema
and sets up the system. However this is infeasible in DOSNs because there were no prac-
tical solution if there are n-different authorities running the same cryptographic scheme
and users from different authorities want to share out private information. Nonetheless,
Rouselakis et al. proposed in [79] a decentralised and MA-ABE where different author-
ities spread all over the world can share information in a secure way by using an ABE
scheme.

Another still open issue in MA-ABE is how to revocate attributes, i.e., how to
generate again the users’ secret keys once an attribute is not hold by a user anymore.
In the literature there are some approaches such as using an expiration time in the access
policy T or using specific cryptographic primitives [76]. However, in our approach we
have solved it by running the KeyGen algorithm each time a photo is requested by a

226 Chapter VIII

user.

VIII.6 Conclusions
In this paper we have proposed a solution for re-sharing photos securely on distributed
social networks. We have used ABE to encrypt and decrypt the content of the picture
that belongs to that person and thus, users can define different access control according
to some policies previously defined over the same image. Moreover, as far as we know,
this is the first solution that can be deployed into both decentralised and centralised
social networks and we also allow different photograph’s formats such as PNG, JPEG or
TIFF. Finally, we have tested our solution on the distributed social network Diaspora,
with one pod (centralised mode) and more than three pods (decentralised mode), a hun-
dred of attributes each and the evaluations show that our solution can encrypt/decrypt
images in less than two seconds.

ABE guarantees, by construction, that only those users having the “right” attributes
can decrypt a ciphertext previously encrypted with a certain access policy aimed at users
with those attributes. On the other hand, ABE does not ensure that users indeed have
the attributes they claim to have. In most ABE proposed schemes researchers assume
that there is a trusted party in charge of verifying that a user holds the attributes she
claims to have. Though we do not explicit depend on this assumption, our proof-of-
concept implementation in Diaspora comes with strong guarantees in this sense: the
attributes of our policies are relationships between users and cannot be faked.6 That
said, our approach is more general and our policy description would in principle allow
to define other attributes besides relationships in the OSN, like profession or location,
which might be fields on a user profile and thus under control of the user. In this case
we would need a trusted party to certify that the user has the attributes she claims to
have.

Future Work. Currently there are no well-defined rules about who can encrypt which
parts of a photo. In this work we impose the rule that no-one can re-encrypt areas of
a picture that are already encrypted. This simple rule might not be enough from the
point of view of usability. It might still lead to undesirable behaviours. For instance,
imagine that Alice uploads a photo of herself without encryption. Later Bob—who
has access to the photo—decides to encrypt some part of it so that only he can see
the photo. In other words, now Alice cannot see parts of the photo that she uploaded.

6We do assume that Diaspora is correctly implemented, and that users cannot access and modify
the corresponding database.

Secure Photo Sharing in Social Networks 227

This authorisation problems go beyond the scope of this paper and require a detailed
analysis of the interactions that can be performed in the social network together with the
encryption algorithms. There are formal techniques to attack this problem, in particular
to encode privacy settings of social networks and formally reason about them [31, 69,
71]. We plan to formalise our solution in order to precisely define which actions are
allowed and prove that no undesirable behaviours can occur.

228 Chapter VIII

229

Bibliography

[1] Alessandro Acquisti and Ralph Gross. ‘Imagined Communities: Awareness, Infor-
mation Sharing, and Privacy on the Facebook’. In: Proceedings of the 6th Inter-
national Workshop Privacy Enhancing Technologies, PET’06. Vol. 4258. LNCS.
2006, pp. 36–58. isbn: 3-540-68790-4. doi: 10.1007/11957454_3.

[2] Alexa-Ranking. http://www.alexa.com/topsites [Accessed: 2017-09-20].

[3] Guillaume Aucher, Guido Boella, and Leendert Torre. ‘A dynamic logic for pri-
vacy compliance’. In: Journal of Artificial Intelligence and Law 19.2-3 (2011),
pp. 187–231. issn: 0924-8463. doi: 10.1007/s10506-011-9114-3.

[4] Randolph Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel
Starin. ‘Persona: an online social network with user-defined privacy’. In: Pro-
ceedings of the 9th ACM SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, CCR’09. 2009,
pp. 135–146. doi: 10.1145/1592568.1592585.

[5] Musard Balliu. ‘A Logic for Information Flow Analysis of Distributed Programs’.
In: Proceedings of 18th Nordic Conference Secure IT Systems, NordSec’13. Vol. 8208.
LNCS. 2013, pp. 84–99. isbn: 978-3-642-41487-9. doi: 10.1007/978- 3- 642-
41488-6_6.

[6] Lujo Bauer, Lorrie Faith Cranor, Saranga Komanduri, Michelle L. Mazurek,
Michael K. Reiter, Manya Sleeper, and Blase Ur. ‘The post anachronism: the
temporal dimension of facebook privacy’. In: Proceedings of the 12th annual
ACM Workshop on Privacy in the Electronic Society, WPES’13. 2013, pp. 1–12.
isbn: 978-1-4503-2485-4. doi: 10.1145/2517840.2517859.

[7] Johan van Benthem, Jan van Eijck, and Barteld Kooi. ‘Logics of communication
and change’. In: Journal of Information and computation 204.11 (2006), pp. 1620–
1662. doi: 10.1016/j.ic.2006.04.006.

https://doi.org/10.1007/11957454_3
https://doi.org/10.1007/s10506-011-9114-3
https://doi.org/10.1145/1592568.1592585
https://doi.org/10.1007/978-3-642-41488-6_6
https://doi.org/10.1007/978-3-642-41488-6_6
https://doi.org/10.1145/2517840.2517859
https://doi.org/10.1016/j.ic.2006.04.006

230

[8] Ido Ben-Zvi and Yoram Moses. ‘Agent-time epistemics and coordination’. In:
Proceedings of the 5th Indian Conference on Logic and Its Applications, ICLA’13.
Vol. 7750. LNCS. 2013, pp. 97–108. doi: 10.1007/978-3-642-36039-8_9.

[9] Bostom.com. Harvard student loses Facebook internship after pointing out pri-
vacy flaws. http://www.boston.com/news/nation/2015/08/12/harvard-student-
loses-facebook-internship-after-pointing-out-privacy-flaws/. [Accessed: 2017-09-20].
2015.

[10] Danah Boyd and Nicole B. Ellison. ‘Social network sites: Definition, history,
and scholarship’. In: Journal of Computer-Mediated Communication 13.1 (2007),
pp. 210–230. doi: 10.1111/j.1083-6101.2007.00393.x.

[11] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. ‘TAO: Facebook’s Distributed Data Store for the Social Graph’. In: Pro-
ceedings of the 2013 USENIX Annual Technical Conference, USENIX ATC’13.
2013, pp. 49–60. isbn: 978-1-931971-01-0.

[12] Glenn Bruns, Philip WL Fong, Ida Siahaan, and Michael Huth. ‘Relationship-
based access control: its expression and enforcement through hybrid logic’. In:
Proceedings of the 2nd ACM conference on Data and Application Security and
Privacy, CODASPY’12. 2012, pp. 117–124. isbn: 978-1-4503-1091-8. doi: 10.
1145/2133601.2133616.

[13] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta. ‘Peer-
SoN: P2P Social Networking: Early Experiences and Insights’. In: Proceedings
of the 2nd ACM EuroSys Workshop on Social Network Systems, SNS’09. 2009,
pp. 46–52. isbn: 978-1-60558-463-8. doi: 10.1145/1578002.1578010.

[14] Twitter Help Center. Protecting and unprotecting your Tweets.
https://support.twitter.com/articles/20169886. [Accessed: 2017-09-20]. 2016.

[15] Zoé Christoff and Jens Ulrik Hansen. ‘A logic for diffusion in social networks’. In:
Journal of Applied Logic 13.1 (2015), pp. 48–77. issn: 1570-8683. doi: 10.1016/
j.jal.2014.11.011.

[16] Zoé Christoff and Jens Ulrik Hansen. ‘Dynamic social networks logic’. In: Journal
of Applied Logic (to appear), available as ILLC Prepublication Series Report PP-
2014-09 (2014).

https://doi.org/10.1007/978-3-642-36039-8_9
https://doi.org/10.1111/j.1083-6101.2007.00393.x
https://doi.org/10.1145/2133601.2133616
https://doi.org/10.1145/2133601.2133616
https://doi.org/10.1145/1578002.1578010
https://doi.org/10.1016/j.jal.2014.11.011
https://doi.org/10.1016/j.jal.2014.11.011

231

[17] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. ‘Dynamic Event-
Based Runtime Monitoring of Real-Time and Contextual Properties’. In: Proceed-
ings of 13th International Workshop on Formal Methods for Industrial Critical
Systems, FMICS’08. Vol. 5596. LNCS. 2009, pp. 135–149. isbn: 978-3-642-03239-
4. doi: 10.1007/978-3-642-03240-0_13.

[18] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. ‘LARVA — Safer
Monitoring of Real-Time Java Programs (Tool Paper)’. In: Proceedings of the 7th
IEEE International Conference on Software Engineering and Formal Methods,
SEFM’09. 2009, pp. 33–37. isbn: 978-0-7695-3870-9. doi: 10.1109/SEFM.2009.
13.

[19] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. ‘Safebook: A privacy-
preserving online social network leveraging on real-life trust’. In: IEEE Communi-
cations Magazine 47.12 (2009), pp. 94–101. doi: 10.1109/MCOM.2009.5350374.

[20] Anupam Datta, Jeremiah Blocki, Nicolas Christin, Henry DeYoung, Deepak
Garg, Limin Jia, Dilsun Kirli Kaynar, and Arunesh Sinha. ‘Understanding and
Protecting Privacy: Formal Semantics and Principled Audit Mechanisms’. In:
Proceedings of the 7th International Conference on Information Systems Secu-
rity, ICISS’11. Vol. 7093. LNCS. 2011, pp. 1–27. isbn: 978-3-642-25559-5. doi:
10.1007/978-3-642-25560-1_1.

[21] PPF Diaspora*. Test pod: https://ppf-diaspora.raulpardo.org.
Code: https://github.com/raulpardo/ppf-diaspora [Accessed: 2017-09-20].

[22] Diaspora*. https://diasporafoundation.org/ [Accessed: 2017-09-20].

[23] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. ‘Specifying and
Reasoning About Dynamic Access-Control Policies’. In: Proceedings of the 3rd
International Joint Conference on Automated Reasoning, IJCAR’06. Vol. 4130.
LNCS. 2006, pp. 632–646. isbn: 3-540-37187-7. doi: 10.1007/11814771_51.

[24] Azar Eftekhar, Chris Fullwood, and Neil Morris. ‘Capturing personality from
Facebook photos and photo-related activities: How much exposure do you need?’
In: Journal of Computers in Human Behavior 37 (2014), pp. 162–170. issn:
0747-5632. doi: 10.1016/j.chb.2014.04.048.

[25] Jan van Eijck. ‘DEMO – A Demo of Epistemic Modelling’. In: Proceedings of the
7th Augustus de Morgan Workshop, AMW’07. 2007, pp. 305–363.

https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/MCOM.2009.5350374
https://doi.org/10.1007/978-3-642-25560-1_1
https://doi.org/10.1007/11814771_51
https://doi.org/10.1016/j.chb.2014.04.048

232

[26] Nicole B. Ellison, Jessica Vitak, Charles Steinfield, Rebecca Gray, and Cliff
Lampe. ‘Negotiating Privacy Concerns and Social Capital Needs in a Social
Media Environment’. In: Privacy Online - Perspectives on Privacy and Self-
Disclosure in the Social Web. 2011, pp. 19–32. doi: 10.1007/978-3-642-21521-
6_3.

[27] Kayhan Erciyes. Complex Networks: An Algorithmic Perspective. CRC Press,
Inc., 2014. isbn: 978-1466571662.

[28] Facebook. https://www.facebook.com/ [Accessed: 2017-09-20].

[29] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning
about knowledge. Vol. 4. MIT press Cambridge, 2003. isbn: 978-0262562003.

[30] FlockDB: A distributed, fault-tolerant graph database.
https://github.com/twitter/flockdb [Accessed: 2017-09-20].

[31] Philip W.L. Fong. ‘Relationship-based Access Control: Protection Model and
Policy Language’. In: Proceedings of the 1st ACM Conference on Data and Ap-
plication Security and Privacy, CODASPY’11. 2011, pp. 191–202. isbn: 978-1-
4503-0466-5. doi: 10.1145/1943513.1943539.

[32] PhilipW.L. Fong, Mohd Anwar, and Zhen Zhao. ‘A Privacy Preservation Model
for Facebook-Style Social Network Systems’. In: Proceedings of the 14th European
Symposium on Research in Computer Security, ESORICS’09. Vol. 5789. LNCS.
Springer, 2009, pp. 303–320. isbn: 978-3-642-04443-4. doi: 10.1007/978-3-642-
04444-1_19.

[33] Peter Gammie and Ron van der Meyden. ‘MCK: Model Checking the Logic of
Knowledge’. In: Proceedings of the 16th International Conference on Computer
Aided Verification, CAV’04. Vol. 3114. LNCS. 2004, pp. 479–483. isbn: 978-3-
540-22342-9. doi: 10.1007/978-3-540-27813-9_41.

[34] G. Scott Graham and Peter J. Denning. ‘Protection: principles and practice’.
In: American Federation of Information Processing Societies: AFIPS Conference
Proceedings: 1972 Spring Joint Computer Conference. 1972, pp. 417–429. doi:
10.1145/1478873.1478928.

[35] Benjamin Greschbach, Gunnar Kreitz, and Sonja Buchegger. ‘The devil is in
the metadata - New privacy challenges in Decentralised Online Social Networks’.
In: Proceedings of the 10th Annual IEEE International Conference on Pervasive
Computing and Communications, PerCom’12. 2012, pp. 333–339. isbn: 978-1-
4673-0905-9. doi: 10.1109/PerComW.2012.6197506.

https://doi.org/10.1007/978-3-642-21521-6_3
https://doi.org/10.1007/978-3-642-21521-6_3
https://doi.org/10.1145/1943513.1943539
https://doi.org/10.1007/978-3-642-04444-1_19
https://doi.org/10.1007/978-3-642-04444-1_19
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1145/1478873.1478928
https://doi.org/10.1109/PerComW.2012.6197506

233

[36] Ralph Gross and Alessandro Acquisti. ‘Information revelation and privacy in
online social networks’. In: Proceedings of the 2005 ACM Workshop on Privacy
in the Electronic Society, WPES’05. 2005, pp. 71–80. isbn: 1-59593-228-3. doi:
10.1145/1102199.1102214.

[37] G. L. Guernic. ‘Automaton-based Confidentiality Monitoring of Concurrent Pro-
grams’. In: Proceedings of 20th IEEE Computer Security Foundations Symposium,
CSF’07. 2007, pp. 218–232. isbn: 0-7695-2819-8. doi: 10.1109/CSF.2007.10.

[38] Joseph Y Halpern and Kevin R O’Neill. ‘Secrecy in multiagent systems’. In:
ACM Transactions on Information and System Security 12.1 (2008), p. 5. doi:
10.1145/1410234.1410239.

[39] Joseph Y. Halpern, Dov Samet, and Ella Segev. ‘Defining Knowledge in Terms
of Belief: The Modal Logic Perspective’. In: Journal of the Review of Symbolic
Logic 2.3 (2009), pp. 469–487. doi: 10.1017/S1755020309990141.

[40] Andrew K. Hirsch and Michael R. Clarkson. ‘Belief Semantics of Authorization
Logic’. In: Proceedings of the 20th ACM SIGSAC Conference on Computer &
Communications Security, CCS’13. 2013, pp. 561–572. isbn: 978-1-4503-2477-9.
doi: 10.1145/2508859.2516667.

[41] Maritza Johnson, Serge Egelman, and Steven M. Bellovin. ‘Facebook and Pri-
vacy: It’s Complicated’. In: Proceedings of the 8th Symposium on Usable Pri-
vacy and Security, SOUPS’12. 2012, pp. 1–15. isbn: 978-1-4503-1532-6. doi:
10.1145/2335356.2335369.

[42] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. ‘Usage control in com-
puter security: A survey’. In: Journal of Computer Science Review 4.2 (2010),
pp. 81–99. doi: 10.1016/j.cosrev.2010.02.002.

[43] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Schmidt.
‘Automata-Based Confidentiality Monitoring’. In: Proceedings of the 11th Asian
Computing Science Conference on Secure Software and Related Issues, ASIAN’06.
2007, pp. 75–89. isbn: 978-3-540-77505-8. doi: 10.1007/978-3-540-77505-8_7.

[44] Daniel Le Métayer. ‘Privacy by Design: A Formal Framework for the Analysis
of Architectural Choices’. In: Proceedings of the 3rd ACM Conference on Data
and Application Security and Privacy, CODASPY’13. 2013, pp. 95–104. isbn:
978-1-4503-1890-7. doi: http://doi.acm.org/10.1145/2435349.2435361.

[45] Amanda Lenhart, Kristen Purcell, Aaron Smith, and Kathryn Zickuhr. ‘Social
Media & Mobile Internet Use among Teens and Young Adults. Millennials.’ In:
Pew Internet & American Life Project (2010).

https://doi.org/10.1145/1102199.1102214
https://doi.org/10.1109/CSF.2007.10
https://doi.org/10.1145/1410234.1410239
https://doi.org/10.1017/S1755020309990141
https://doi.org/10.1145/2508859.2516667
https://doi.org/10.1145/2335356.2335369
https://doi.org/10.1016/j.cosrev.2010.02.002
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/http://doi.acm.org/10.1145/2435349.2435361

234

[46] Allison Lewko and Brent Waters. ‘Decentralizing Attribute-based Encryption’.
In: Proceedings of the 30th Annual International Conference on Theory and Ap-
plications of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT’11.
Vol. 6632. LNCS. 2011, pp. 568–588. isbn: 978-3-642-20464-7.

[47] Ninghui Li and Mahesh V. Tripunitara. ‘On Safety in Discretionary Access Con-
trol’. In: Proceedings of the 26th IEEE Symposium on Security and Privacy,
S&P’05. 2005, pp. 96–109. isbn: 0-7695-2339-0. doi: 10.1109/SP.2005.14.

[48] Kaitai Liang, Joseph K. Liu, Rongxing Lu, and Duncan S. Wong. ‘Privacy Con-
cerns for Photo Sharing in Online Social Networks’. In: Journal of IEEE Internet
Computing 19.2 (2015), pp. 58–63. issn: 1089-7801. doi: 10.1109/MIC.2014.
107.

[49] Jay Ligatti, Lujo Bauer, and David Walker. ‘Edit automata: Enforcement mecha-
nisms for run-time security policies’. In: Journal of Information Security 4 (2005),
pp. 2–16.

[50] Eden Litt and Eszter Hargittai. ‘Smile, snap, and share? A nuanced approach
to privacy and online photo-sharing’. In: Poetics 42 (2014), pp. 1–21. issn: 0304-
422X. doi: 10.1016/j.poetic.2013.10.002.

[51] Yabing Liu, Krishna P. Gummadi, Balachander Krishnamurthy, and Alan Mis-
love. ‘Analyzing Facebook Privacy Settings: User Expectations vs. Reality’. In:
Proceedings of the 11th ACM SIGCOMM Conference on Internet Measurement
Conference, IMC’11. 2011, pp. 61–70. isbn: 978-1-4503-1013-0. doi: 10.1145/
2068816.2068823.

[52] Katharina Lobinger. ‘Photographs as things – photographs of things. A texto-
material perspective on photo-sharing practices’. In: Journal of Information,
Communication & Society 19.4 (2016), pp. 475–488.

[53] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. ‘MCMAS: A model
checker for the verification of multi-agent systems’. In: Proceedings of the 21st
International Conference on Computer Aided Verification, CAV’09. Vol. 5643.
LNCS. 2009, pp. 682–688. isbn: 978-3-642-02657-7. doi: 10.1007/978-3-642-
02658-4_55.

[54] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. ‘MCMAS: an open-
source model checker for the verification of multi-agent systems’. In: Interna-
tional Journal on Software Tools for Technology Transfer 19.1 (2017), pp. 9–30.
doi: 10.1007/s10009-015-0378-x.

https://doi.org/10.1109/SP.2005.14
https://doi.org/10.1109/MIC.2014.107
https://doi.org/10.1109/MIC.2014.107
https://doi.org/10.1016/j.poetic.2013.10.002
https://doi.org/10.1145/2068816.2068823
https://doi.org/10.1145/2068816.2068823
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/s10009-015-0378-x

235

[55] Alessio Lomuscio and Mark Ryan. ‘On the Relation between Interpreted Systems
and Kripke Models’. In: Agents and Multi-Agent Systems Formalisms, Method-
ologies, and Applications. Vol. 1441. LNCS. 1997, pp. 46–59. isbn: 3-540-64769-4.

[56] M. Madejski, M. Johnson, and S.M. Bellovin. ‘A study of privacy settings errors
in an online social network’. In: Proceedings of the 10th IEEE International Con-
ference on Pervasive Computing and Communication Workshops, PerCom’12.
2012, pp. 340–345. isbn: 978-1-4673-0905-9. doi: 10 . 1109 / PerComW . 2012 .
6197507.

[57] Michelle Madejski, Maritza Lupe Johnson, and Steven Michael Bellovin. ‘The
failure of online social network privacy settings’. In: Columbia University Com-
puter Science Technical Reports (2011). Technical report: CUCS-010-11. doi:
10.7916/D8NG4ZJ1.

[58] Aqdas Malik, Amandeep Dhir, and Marko Nieminen. ‘Uses and Gratifications of
digital photo sharing on Facebook’. In: Journal of Telematics and Informatics
33.1 (2016), pp. 129–138. issn: 0736-5853. doi: 10.1016/j.tele.2015.06.009.

[59] John-Jules Ch Meyer and Wiebe Van Der Hoek. Epistemic Logic for AI and
Computer Science. Cambridge University Press, 1995. isbn: 052146014X.

[60] Mainack Mondal, Peter Druschel, Krishna P. Gummadi, and Alan Mislove. ‘Be-
yond Access Control: Managing Online Privacy via Exposure’. In: Proceedings of
NDSS Workshop on Usable Security Workshop, USEC’14. 2014. isbn: 1-891562-
37-1. doi: 10.14722/usec.2014.23046.

[61] Neo4j decreases development time-to-market for LinkedIn’s Chitu App.
https://neo4j.com/case-studies/linkedin-china/ [Accessed: 2017-09-20]. 2017.

[62] Facebook’s newsroom. Improving the Experience When Relationships End.
https://newsroom.fb.com/news/2015/11/improving-the-experience-when-
relationships-end/. [Accessed: 2017-09-20]. 2015.

[63] Facebook’s newsroom. Making It Easier to Share With Who You Want.
https://newsroom.fb.com/news/2014/05/making-it-easier-to-share-with-
who-you-want/. [Accessed: 2017-09-20]. 2014.

[64] Shirin Nilizadeh, Sonia Jahid, Prateek Mittal, Nikita Borisov, and Apu Kapadia.
‘Cachet: A Decentralized Architecture for Privacy Preserving Social Networking
with Caching’. In: Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, CoNEXT’12. 2012, pp. 337–348. isbn:
978-1-4503-1775-7. doi: 10.1145/2413176.2413215.

https://doi.org/10.1109/PerComW.2012.6197507
https://doi.org/10.1109/PerComW.2012.6197507
https://doi.org/10.7916/D8NG4ZJ1
https://doi.org/10.1016/j.tele.2015.06.009
https://doi.org/10.14722/usec.2014.23046
https://doi.org/10.1145/2413176.2413215

236

[65] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. ‘Scaling Memcache
at Facebook’. In: Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation NSDI’13. 2013, pp. 385–398. isbn: 978-1-
931971-00-3.

[66] Raúl Pardo. Formalising Privacy Policies for Social Networks. Pages 102. Li-
centiate thesis. Department of Computer Science and Engineering, Chalmers
University of Technology, 2015.

[67] Raúl Pardo, Musard Balliu, and Gerardo Schneider. ‘Formalising privacy policies
in social networks’. In: Journal of Logical and Algebraic Methods in Programming
(2017). issn: 2352-2208. doi: 10.1016/j.jlamp.2017.02.008.

[68] Raúl Pardo, Christian Colombo, Gordon J. Pace, and Gerardo Schneider. ‘An
Automata-Based Approach to Evolving Privacy Policies for Social Networks’. In:
Proceedings of the 16th International Conference on Runtime Verification, RV’16.
Vol. 10012. LNCS. 2016, pp. 285–301. isbn: 978-3-319-46981-2. doi: 10.1007/
978-3-319-46982-9_18.

[69] Raúl Pardo, Ivana Kellyérová, César Sánchez, and Gerardo Schneider. ‘Specifica-
tion of Evolving Privacy Policies for Online Social Networks’. In: Proceedings of
the 23rd International Symposium on Temporal Representation and Reasoning,
TIME’16. IEEE, 2016, pp. 70–79. isbn: 978-1-5090-3825-1. doi: 10.1109/TIME.
2016.15.

[70] Raúl Pardo, César Sánchez, and Gerardo Schneider. ‘Timed Epistemic Knowl-
edge Bases for Social Networks (Extended Version)’. In: ArXiv e-prints (2017).
eprint: 1708.04070 (cs.LO).

[71] Raúl Pardo and Gerardo Schneider. ‘A Formal Privacy Policy Framework for So-
cial Networks’. In: Proceedings of the 12th International Conference on Software
Engineering and Formal Methods, SEFM’14. Vol. 8702. LNCS. 2014, pp. 378–
392. isbn: 978-3-319-10430-0. doi: 10.1007/978-3-319-10431-7_30.

[72] Raúl Pardo and Gerardo Schneider. ‘Model Checking Social Network Models’. In:
Proceedings of the Eighth International Symposium on Games, Automata, Logics
and Formal Verification, GandALF’17. Vol. 256. EPTCS. 2017, pp. 238–252. doi:
10.4204/EPTCS.256.17.

https://doi.org/10.1016/j.jlamp.2017.02.008
https://doi.org/10.1007/978-3-319-46982-9_18
https://doi.org/10.1007/978-3-319-46982-9_18
https://doi.org/10.1109/TIME.2016.15
https://doi.org/10.1109/TIME.2016.15
1708.04070
https://doi.org/10.1007/978-3-319-10431-7_30
https://doi.org/10.4204/EPTCS.256.17

237

[73] Pablo Picazo-Sanchez, Raúl Pardo, and Gerardo Schneider. ‘Secure Photo Shar-
ing in Social Networks’. In: Proceedings of the 32nd International Conference on
ICT Systems Security and Privacy Protection, IFIP SEC 2017. Vol. 502. 2017,
pp. 79–92. isbn: 978-3-319-58469-0. doi: 10.1007/978-3-319-58469-0_6.

[74] Jan Plaza. ‘Logics of public communications’. In: Synthese 158.2 (2007), pp. 165–
179. issn: 0039-7857. doi: 10.1007/s11229-007-9168-7.

[75] Riccardo Pucella. ‘Knowledge and Security’. In: ArXiv e-prints (2013). eprint:
1305.0876 (cs.CR).

[76] Huiling Qian, Jiguo Li, Yichen Zhang, and Jinguang Han. ‘Privacy-preserving
personal health record using multi-authority attribute-based encryption with re-
vocation’. In: International Journal of Information Security 14.6 (2015), pp. 487–
497. issn: 1615-5270. doi: 10.1007/s10207-014-0270-9.

[77] Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega. ‘P3: Toward Privacy-
Preserving Photo Sharing’. In: Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’13). 2013, pp. 515–528.
isbn: 978-1-931971-00-3.

[78] Moritz Riesner, Michael Netter, and Günther Pernul. ‘An Analysis of Imple-
mented and Desirable Settings for Identity Management on Social Networking
Sites’. In: Proceedings of the 7th International Conference on Availability, Reli-
ability and Security, ARES’12. 2012, pp. 103–112. isbn: 978-1-4673-2244-7. doi:
10.1109/ARES.2012.20.

[79] Yannis Rouselakis and Brent Waters. ‘Efficient Statically-Secure Large-Universe
Multi-Authority Attribute-Based Encryption’. In: Proceedings of the 19th In-
ternational Conference on Financial Cryptography and Data Security, FC’15.
Vol. 8975. LNCS. 2015, pp. 315–332. doi: 10.1007/978-3-662-47854-7_19.

[80] Ji Ruan and Michael Thielscher. ‘A logic for knowledge flow in social networks’.
In: Proceedings of the 24th Australasian Joint Conference on Advances in Arti-
ficial Intelligence, AI’12. Vol. 7106. LNCS. 2011, pp. 511–520. isbn: 978-3-642-
25831-2. doi: 10.1007/978-3-642-25832-9_52.

[81] Xin Ruan, Chuan Yue, and Haining Wang. ‘Unveiling Privacy Setting Breaches
in Online Social Networks’. In: Proceedings of the 9th International Conference
on Security and Privacy in Communication Networks, SecureComm’13. Vol. 127.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. 2013, pp. 323–341. doi: 10.1007/978-3-319-
04283-1_20.

https://doi.org/10.1007/978-3-319-58469-0_6
https://doi.org/10.1007/s11229-007-9168-7
1305.0876
https://doi.org/10.1007/s10207-014-0270-9
https://doi.org/10.1109/ARES.2012.20
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1007/978-3-642-25832-9_52
https://doi.org/10.1007/978-3-319-04283-1_20
https://doi.org/10.1007/978-3-319-04283-1_20

238

[82] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
‘Role-Based Access Control Models’. In: Journal of IEEE Computer 29.2 (1996),
pp. 38–47. doi: 10.1109/2.485845.

[83] Fred B. Schneider. ‘Enforceable Security Policies’. In: ACM Transactions on In-
formation and System Security 3.1 (2000), pp. 30–50. issn: 1094-9224.

[84] Jeremy Seligman, Fenrong Liu, and Patrick Girard. ‘Facebook and the Epistemic
Logic of Friendship’. In: Proceedings of the 14th Conference on Theoretical Aspects
of Rationality and Knowledge, TARK’13. 2013. isbn: 978-0-615-74716-3.

[85] Jeremy Seligman, Fenrong Liu, and Patrick Girard. ‘Knowledge, friendship and
social announcement’. In: Proceedings of the Tsinghua Logic Conference. 2013.

[86] Snaptchat. https://www.snapchat.com/ [Accessed: 2017-09-20].

[87] Richard Snodgrass and Ilsoo Ahn. ‘Temporal Databases’. In: Journal of IEEE
Computer 19.9 (1986), pp. 35–42. issn: 0018-9162. doi: 10 . 1109 / MC . 1986 .
1663327.

[88] Statista. Facebook statistics. https://www.statista.com/statistics/264810/number-
of-monthly-active-facebook-users-worldwide/. [Accessed: 2017-09-20]. 2016.

[89] Fred Stutzman and Jacob Kramer-Duffield. ‘Friends Only: Examining a Privacy-
enhancing Behavior in Facebook’. In: Proceedings of the 28th SIGCHI Conference
on Human Factors in Computing Systems, CHI’10. 2010, pp. 1553–1562. isbn:
978-1-60558-929-9. doi: 10.1145/1753326.1753559.

[90] Sanaz Taheri-Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap. ‘Security and
Privacy of Distributed Online Social Networks’. In: Proceedings of the 35th
IEEE International Conference on Distributed Computing Systems Workshops,
ICDCS’15. 2015, pp. 112–119. isbn: 978-1-4673-7303-6. doi: 10.1109/ICDCSW.
2015.30.

[91] The Guardian. As fake news takes over Facebook feeds, many are taking satire
as fact. https://www.theguardian.com/media/2016/nov/17/facebook-fake-news-
satire. [Accessed: 2017-09-20]. 2016.

[92] The Guardian. How to solve Facebook’s fake news problem: experts pitch their
ideas. https://www.theguardian.com/technology/2016/nov/29/facebook-fake-
news-problem-experts-pitch-ideas-algorithms. [Accessed: 2017-09-20]. 2016.

[93] The Guardian. Obama is worried about fake news on social media–and we should
be too. https://www.theguardian.com/media/2016/nov/20/barack-obama-
facebook-fake-news-problem. [Accessed: 2017-09-20]. 2016.

https://doi.org/10.1109/2.485845
https://doi.org/10.1109/MC.1986.1663327
https://doi.org/10.1109/MC.1986.1663327
https://doi.org/10.1145/1753326.1753559
https://doi.org/10.1109/ICDCSW.2015.30
https://doi.org/10.1109/ICDCSW.2015.30

239

[94] Twitter, Inc. https://twitter.com/ [Accessed: 2017-09-20].

[95] Brent Waters. ‘Ciphertext-policy Attribute-based Encryption: An Expressive,
Efficient, and Provably Secure Realization’. In: Proceedings of the 14th Interna-
tional Conference on Practice and Theory in Public Key Cryptography Confer-
ence on Public Key Cryptography, PKC’11. Vol. 6571. LNCS. 2011, pp. 53–70.
isbn: 978-3-642-19378-1. doi: 10.1007/978-3-642-19379-8_4.

[96] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James
A. Hendler, and Gerald J. Sussman. ‘Information accountability’. In: Communin-
cations of the ACM 51.6 (2008), pp. 82–87. doi: 10.1145/1349026.1349043.

[97] Bożena Woźna and Alessio Lomuscio. ‘A Logic for Knowledge, Correctness, and
Real Time’. In: Proceedings of the 5th International Workshop on Computational
Logic in Multi-Agent Systems, CLIMA’04. Vol. 3487. LNCS. 2004, pp. 1–15. doi:
10.1007/11533092_1.

[98] Zuojun Xiong, Thomas Ågotnes, Jeremy Seligman, and Rui Zhu. ‘Towards a
Logic of Tweeting’. In: Proceedings of the 6th International Workshop on Logic,
Rationality, and Interaction, LORI’17. Vol. 10455. LNCS. 2017, pp. 49–64. doi:
10.1007/978-3-662-55665-8_4.

[99] Lin Yuan, David Mc Nally, Alptekin Küpçü, and Touradj Ebrahimi. ‘Privacy-
Preserving Photo Sharing based on a Public Key Infrastructure’. In: SPIE Optical
Engineering + Applications. Vol. 9599. Applications of Digital Image Processing
XXXVIII. 2015. doi: 10.1117/12.2190458.

[100] Marc van Zee, Dragan Doder, Mehdi Dastani, and Leendert W. N. van der
Torre. ‘AGM Revision of Beliefs about Action and Time’. In: Proceedings of the
24th International Joint Conference on Artificial Intelligence, IJCAI’15. 2015,
pp. 3250–3256. isbn: 978-1-57735-738-4.

[101] Lan Zhang, Taeho Jung, Cihang Liu, Xuan Ding, Xiang-Yang Li, and Yunhao
Liu. ‘POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mo-
bile Devices’. In: Proceedings of the 35th IEEE International Conference on
Distributed Computing Systems, ICDCS’15. 2015, pp. 308–317. doi: 10.1109/
ICDCS.2015.39.

https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1145/1349026.1349043
https://doi.org/10.1007/11533092_1
https://doi.org/10.1007/978-3-662-55665-8_4
https://doi.org/10.1117/12.2190458
https://doi.org/10.1109/ICDCS.2015.39
https://doi.org/10.1109/ICDCS.2015.39

	Introduction
	Privacy Policies in Online Social Networks
	Access Control in Online Social Networks
	Thesis Overview

	A Formal Privacy Policy Framework for Social Networks
	Introduction
	Privacy Policy Framework
	PPF instantiation
	Case Studies
	Related Work
	Final Discussion

	Formalising Privacy Policies in Social Networks
	Introduction
	Privacy Policy Framework
	Privacy Policies in Dynamic SNS
	Proving Privacy in Social Networks
	Discussion and Related Work
	Conclusions and Future Work
	Appendix

	Model Checking Social Network Models
	Introduction
	Preliminaries
	Model checking SNMs
	Properties of Knowledge in SNMs
	Translation of SNMs into Kripke Models
	Model checking complexity
	Related work
	Final Discussion
	Appendix

	An Automata-based Approach to Evolving Privacy Policies for Social Networks
	Introduction
	Policy automata
	Translation of policy automata to DATEs
	Implementation in Diaspora* using Larva
	Case studies
	Related work
	Conclusions
	Appendix

	Specification of Evolving Privacy Policies for Online Social Networks
	Introduction
	Timed FPPF
	KBLT model-checking
	Related Work
	Final Discussion
	Appendix

	Timed Epistemic Knowledge Bases for Social Networks
	Introduction
	A Timed Privacy Policy Framework
	A Timed Knowledge Based Logic
	Writing Privacy Policies
	Related work
	Conclusions

	Secure Photo Sharing in Social Networks
	Introduction
	Preliminaries
	System Design
	Evaluation
	Related Work
	Conclusions

	Bibliography

