
1

Pull Request Governance In Open Source Communities
Adam Alami, Raúl Pardo, Marisa Leavitt Cohn, and Andrzej Wąsowski, Member, IEEE

Abstract—Pull requests facilitate inclusion and improvement of contributions in distributed software projects, especially in open source communities. An author
makes a pull request to present a contribution as a candidate for inclusion in a code base. The request is inspected by maintainers and reviewers. The initiated
process of review and collaborative improvement can be loaded with debates, opinions, and emotions. It heavily influences the atmosphere in the community. It can
demotivate and detract contributors or it can fail to guard the code quality. Both problems put the existence of a community at risk. This mixed methods study aims
to elucidate the mechanisms of evaluating pull requests in diverse open source software communities from the perspectives of developers and maintainers. We
interviewed 30 participants from five different communities and conducted a survey with N=387 respondents. The data shows that acceptance of contributions in
open source depends not only on technical criteria, but also significantly on social and strategic aspects. As a result, we identify three governance styles for pull
requests: (1) protective, (2) equitable, and (3) lenient. While the protective style values trustworthiness and reliability of the contributor, the lenient style believes in
creating a positive and welcoming environment where contributors are mentored to evolve contributions until the community standards are met. Each of the
governance styles safeguards the quality of the project code in different ways. We hope that this material will help researchers and community managers to obtain a
more nuanced view on the peculiarities of different communities and the strengths and weakness of their pull requests evaluation process.

✦

1 INTRODUCTION

Into Scylla he fell, wishing to avoid Charybdis; the brave
project maintainer treading between the prospect of a

lonely struggle without enough contributors and a busy
processing of overwhelmingly many low quality pull
requests. The pull request (PR) evaluation process is one of
the very few instruments she has at hand to control the influx
of contributions. As one of our interviewees explains: “how
contributions are rejected is a major factor in a project’s success.
The structure of the acceptance process is such that it can easily be
used to bully people, assert dominance, engage in various forms of
emotionally abusive behavior.” Only 13% of PRs are rejected for
technical reasons! [1] “The toughest and most frequent challenges
encountered by contributors are social in nature.” [2] The process
involves specific technical and social rituals, and various
behavioral patterns emerge throughout. It is formative for the
community as a social whole and for the individual members.
In this paper, we set off to deeply investigate the mechanisms,
norms, and propensities displayed by participants in the PR
evaluation. We ask the following questions:
RQ1: How do FOSS communities decide to accept pull requests?
RQ2: What are the principles of evaluating pull requests?
We address these questions with a mixed methods study,
based on extensive data transcribed from 30 interviews with
contributors and maintainers from five communities, and a
survey with N=387 respondents from 15 communities.

We define PR governance as the system of rules, practices,
and norms by which a community directs and controls the
assessment of PRs. We identify three archetypical PR
governance styles and their underlying believes and norms.
From this understanding, we extract lessons for community
leaders and maintainers. For example, our interviewees
value governance by technical merit over social connections.
We identify a mixture of the following three governance
styles in the studied communities (RQ1):
Protective: A defensive style of governance where the project
leader and his subordinates have absolute power over what

• The authors are affiliated with IT University of Copenhagen in Denmark,
E-mails: {adaa,raup,mcoh,wasowski}@itu.dk

contributions are accepted; sometimes described in FOSS
circles as “no-by-default.” This style requires commitment
from the contributor to win the trust and approval of the
gatekeeper before the evaluation can take place.
Equitable: A style of governance based on fairness and the
ascendancy of evaluation principles. It aims at a balanced and
technically grounded decision. The community principles
overrule any leniency toward contributors.
Lenient: A style tolerating some errors and mediocrity in
favour of a positive and welcoming environment for contrib-
utors. The foundational belief here is that a contribution is
an asset that should not be taken lightly. The contributor’s
enthusiasm should be leveraged for the benefit of the commu-
nity. In order not to compromise the quality, the contributor
is mentored to evolve the PR to acceptable quality.

Our data shows that each open source community, as a
social group, tends to display a mixture of the three styles,
often with a clear tendency towards one of them. We also see
that despite the fundamental differences in governance, all
three styles aim to safeguard quality and ensure the evolution
of the project.

In response to RQ2, we identified criteria that fit into
three categories: (1) Software engineering practices and
requirements, (2) social norms, and (3) strategic vision for the
project. The software engineering criteria are specific rules
and recommendations that must be adhered to by a PR to
be assessed as “mergeable.” For instance, many communities
require that a PR addresses a single atomic concern. Social
norms, like trustworthiness, guide behavior of developers. A
contribution from a trustworthy community member who
demonstrated prior commitment might be prioritized. Finally,
the project vision must be met, or at least not contradicted,
by the intent of the contribution.

FOSS communities are idiosyncratic social systems
and the PR governance styles reflect their uniqueness.
Understanding the values, norms and rituals of PR
evaluation gives insight into the evolution, growth, and life
cycle of these social systems. For example, a typical Coala
contributor prefers mentoring a contributor to improve her

2

PR, instead of rejecting the contribution (94% probability
according to our survey). On the other hand, 47% of the
surveyed Linux Kernel maintainers agreed that prior trust
is important in accepting a pull request, and 58% think the
reliability of the contributor is a key factor (note that both are
personal qualities, in principle independent from the quality
of a PR in question). In other communities these numbers
are only 7% and 11% respectively. We hope that our findings
will inspire researchers to nuance the understanding and
study of different FOSS communities, and that we can help
community managers and influential maintainers to reflect
about their practices in community interactions.

A shorter version of this work was presented before [3].
Here we extend that qualitative study with a quantitative
survey of contributors and maintainers from 15 communities
(N=387) to increase the credibility of the results. While
our earlier work [3] sought depth and richness by
using qualitative methods, with a narrow focus on five
communities, we now aim to understand how the original
findings manifest in a larger base of FOSS communities.
For example, our claims regarding the governance style
of the Coala community and the protective style of the
Linux Kernel community, and the contrast between the
too, are well visible in the quantitative data. The use of
multiple methods can neutralize some of the disadvantages

of using a single method and strengthen a study [4]. The
quantitative data is analyzed using Bayesian data analysis
[5], which is well suited to data with small bucket sizes (a
small number of participants per community). Our use of
Bayesian inference also demonstrates its merits for software
engineering research, where it is still rarely employed [6].

We describe the study design and analysis methods in
Sect. 2. Sections 3 to 5 discuss the key findings and reflect on
limitations Section 5. We contrast our contribution with the
related work in Sect. 6 and conclude in Sect. 7.

2 METHODS

We want to understand, the what and how of the evaluation;
how decisions are made, and how they affect the participating
developers and the fate of the contributions. Given the
uncharted nature of the question, we opted for a mixed
qualitative and quantitative design, to identify the
propensities of governance, to understand how they are
manifested across a selected set of communities. The
qualitative phase precedes the quantitative phase, and the
design of the latter depends on the constructs and themes
resulting from the former, aiming to broaden the empirical
coverage of the data we used to draw our conclusions [4].

TABLE 1: A brief characterization of the FOSS communities that participated in this study

AngularJS is an open source platform that
makes it easy to build applications for the
web. Angular combines declarative templates,
dependency injection, end to end tooling, and
integrated best practices to solve development
challenges. Angular empowers developers to
build applications that live on the web, mobile,
or the desktop.

Apache. The community known as Apache
develops the Apache web server (one of the
many projects under the Apache Foundation).
Apache is claimed to be the most popular web
server worldwide. The community is a group
of volunteers distributed geographically and
using Internet for collaborative development.

Coala develops a language-independent pro-
gram analysis toolkit (linting and fixing) writ-
ten in Python since 2015. Coala portrays itself
as a community open to newcomers. Directions
for newcomers are clear and encouraging. The
community documentation outlines how to get
started, beginning with meeting others in chat
rooms and Gitter.

DuckDuckGo is a community that designs,
develops and maintains a search engine
committed to privacy. It was founded in 2008
by Gabriel Weinberg, the community grew as
a search engine that does not track the user’s
searches nor sell information about it. By 2013,
there were over three million users of Duck-
DuckGo. In 2014, DuckDuckGo was included
in Safari and interfaced into Mozilla/Firefox.

FOSSASIA is a community that aims to
facilitate the creation of a “sharing society,”
expanding knowledge, tools and opportunities,
freedom of communication and expression
for everyone. The community runs many
diverse projects including SUSI.AI (an artificial
intelligent personal assistance, help desks, and
chatbot) and EventYaY (event management).

JQuery is an open and transparent FOSS
community that designs the JQuery UI library.
The community members work as a team to
develop widgets, animations, and class names
that can be used as themes or styles in mobile,
desktop, and web applications. Because of
the international character and audience, the
project is developed to work in a variety of
languages and cultures.

Linux Kernel. The Linux Kernel is a free and
open source operating system kernel devel-
oped by the Linux Kernel community. Initiated
in 1991 by Linus Torvalds, Linux Kernel oper-
ates under a GNU license and now reaches a
large user base around the world.

Mozilla Firefox is a community developing
a Web browser. Mozilla Firefox is a browser
strives to adhere to (and contribute to) web
standards and to guard users’ privacy. Firefox
is built on a mission of openness, innovation,
and opportunity.

Node.js is a cross-platform JavaScript runtime
environment using the V8 JavaScript engine
from Google Chrome. Node.js provides a set
of asynchronous I/O primitives that prevent
JavaScript code from blocking. Libraries
are written in a non-blocking manner, with
blocking behavior being an exception.

Odoo is a community of 1500+ members build-
ing an ERP/CRM system. Odoo meets complex
user needs with a solution that is easy to use
and upgrade, feature-rich, integrated, support-
ing management of sales, inventory, procure-
ment, accounting, business intelligence, etc.
(30+ applications). Claimed the most installed
business suite for small and large entities.

OpenGenus is a community developing tools
for work with bad Internet connectivity: buffer-
ing data sources, saving web-pages and browse
history, playing games, and to searching web,
images and code offline. It operates online
communities (of freelancers, entrepreneurs,
and programmers) that facilitate discussion,
mentoring, and knowledge exchange.

OpenSUSE is a Linux distribution providing
a user-friendly desktop. OpenSUSE includes
openQA (an automated testing service for
build&release updates), OSEM (an event man-
agement tool), Jangouts (videoconferencing),
YaST (a configuration tool), and Kiwi (manage-
ment of binary images for diverse hardware).

Plone is an Enterprise CMS built on the Zope
application server, powering intranets and web
sites of large organizations, including the U.S.
Federal Bureau of Investigation, Brazilian Gov-
ernment, United Nations, City of Bern (Switzer-
land), New South Wales Government (Aus-
tralia), and European Environment Agency. It
is recognized for its security and accessibility.

ReactJS is a JavaScript library for building user
interfaces based on the reactive programming
paradigm. Declarative views make code more
predictable and easier to debug. React allows
to build encapsulated components that manage
own state and compose into complex UIs.
Originally released in 2013 by Facebook, it has
attracted huge popularity since.

ROS is a flexible open-source framework
for robotics, built around a communication
middleware with asynchronous and syn-
chronous message passing and a distributed
parameter system. ROS builds an ecosystem
of robotics modules for geometry modeling,
robot description, diagnostics, pose estimation,
localization, mapping, and navigation.

3

2.1 Phase I: Qualitative Exploration and Understanding

We conducted 30 semi-structured interviews with contribu-
tors and maintainers from FOSSASIA, Coala, Odoo, Duck-
DuckGo, and Linux Kernel. A semi-structured interview
allows the researcher to add and refine questions during
conversation. This method is effective for gathering rich
data, exploring a topic, and gaining insight into individual
beliefs and behaviors. The used interview questions fall
into introductory, core, and probing categories (Tbl. 2).
The introductory questions set the tone for the interview
and make the interviewee comfortable. The core questions
are directly related to the research questions. The probing
questions are aimed at exposing details and concrete facts. As
developers often contribute to multiple projects, and often
in different roles, we have asked them to speak only for
the community they consider central for them. During the
conversation, we clarified what is the nature and the tenure
of their contributions.

We selected the FOSS communities that we felt would
give us a deep understanding of the phenomena under
study. We sought diversity in the studied communities (see
Sampling sub-section below). We interviewed 30 maintainers
and contributors in total. We randomly (indiscriminately,
without a method, or conscious decision) searched for con-
tributors and maintainers with valid emails in their GitHub
profiles. We sent 87 invites to participate in the interviews.
Thirty-two accepted our invites, two did not show up to
the interviews. For Linux and FOSSASIA communities, we
used prior contacts in the community to recruit participants.
Later, a snowball sampling developed: we asked our contacts
to introduce us to further contributors and maintainers.
Table Table 3 summarizes the resulting demographics of the
interviewees. The experience column shows the number of
years each interviewee spent in contributing to open source.
Maintainers have final responsibility to merge the code and
ensure an adequate review has occurred before the merge.
They also direct the contributors and reviewers, making sure
that they connect to each other appropriately, often serving
as dispatcher. Contributors are developers and sometimes
volunteer to review other developers’ code.

As the subjects were distributed geographically, all inter-
views were conducted using Google Meet. The interviews
lasted from 40 minutes to an hour, and generated in average
twelve pages of verbatim transcripts.

We used thematic coding [7], [8] to analyze the data,
following the guidelines of Robson and McCartan [9] and of

TABLE 2: Key parts of the interview framework

Intro. Can you talk to me about your community? What first
motivated you to participate in this community?

Core. Describe the PR evaluation process in your community.
Can you talk to us about the experience of having a PR rejected?
Can you talk to us about the experience of having a PR accepted?
When you evaluate a PR, how do you go about it? What is your
community attitude and philosophy regarding evaluating PRs?

Probing. What were the reasons for rejecting your PR? How did
you feel about the rejection? What were the reasons for accepting
your PR? How did you feel about the acceptance? What is the
maintainer role in the process?

Miles and coauthors [10]. The iterative analysis begun in the
early stages of the data collection and continued throughout
the study. The responses were coded by examining the data
line-by-line through the lens of the following questions:
What is this saying? What does it represent? What is happening
here? What are they trying to convey? What is the process being
described? Once the responses were coded, we could find
patterns in the codes and interviewees’ statements that
were then suggestive of a theme (i.e. a concept or implied
topic that organizes a group of repeating ideas that help to
understand the responses related to the research question).
After identifying and giving names to the basic meaning
units, we grouped them in categories by similarity. Table 7
shows examples of our codes and their categories.

We stopped interviewing after attaining saturation [11]
so when (1) all the data were accounted for, with no outlying
codes or categories; (2) every category was explained in
depth by the data supporting it; and (3) there was enough
data to answer the research questions. To demonstrate
evidence of saturation during the recruitment and analysis
processes, we compiled a table of examples, which exemplify
the reasoning we used to make decisions on gathering
further data, available at https://github.com/itu-square/
statistical-analysis-foss-governance-styles.

2.2 Phase II: Quantitative Survey

The qualitative analysis allowed to identify the PR evaluation
constructs important to the five communities selected. In the

TABLE 3: The population of the interviewees in Phase I

Interviewee Community Role Exp.[Y] Country

1 FOSSASIA Maintainer 4 India
2 FOSSASIA Maintainer 5 India
3 FOSSASIA Maintainer 4 India
4 FOSSASIA Contributor 3 India
5 FOSSASIA Maintainer 4 India

6 Odoo Contributor 10 India
7 Odoo Contributor 10 Greece
8 Odoo Contributor 12 Belgium
9 Odoo Contributor 3 Italy
10 Odoo Contributor 5 India
11 Odoo Contributor 8 USA
12 Odoo Contributor 15 Belgium

13 DuckDuckGo Contributor 6 USA
14 DuckDuckGo Contributor 8 UK
15 DuckDuckGo Contributor 5 North Macedonia
16 DuckDuckGo Contributor 11 India
17 DuckDuckGo Maintainer 12 USA
18 DuckDuckGo Contributor 9 Finland
19 DuckDuckGo Contributor 3 India

20 Linux Kernel Contributor 12 Finland
21 Linux Kernel Contributor 10 USA
22 Linux Kernel Contributor 5 Ukraine
23 Linux Kernel Contributor 6 India
24 Linux Kernel Maintainer 8 North Macedonia
25 Linux Kernel Contributor 30 USA

26 Coala Contributor 5 India
27 Coala Contributor 4 South Korea
28 Coala Contributor 6 India
29 Coala Maintainer 4 India
30 Coala Maintainer 6 India

https://github.com/itu-square/statistical-analysis-foss-governance-styles
https://github.com/itu-square/statistical-analysis-foss-governance-styles

4

second phase, we extend the coverage to ten new commu-
nities, aiming at exploring the presence of the constructs in
other communities, how the identified exemplary styles of
governance manifest elsewhere. To this end, we posed the
hypotheses in Tbl. 5.

Instrumentation: The survey had a total of twelve
questions. All but the demographic questions, were derived
from the qualitative findings. Tbl. 9 in appendix 1 lists the
questions asked to the maintainers and contributors. The
tables also explain the rationale of including the questions,
i.e., how they were derived from the qualitative findings.

Sampling: The sampling happens at two levels in this
study: the selection of FOSS communities and the selection of
the survey participants, i.e., the maintainers and contributors.
For FOSS communities (Tbl. 1), we used purposive sampling
to select the cases, a strategy that uses specific characteristics
relevant to the study’s objective [12]. Our strategy is to
include communities that are as diverse as possible. To ensure
diversity, we used five dimensions in the selection: products,
contributors demographics, the size of the community, the
community history and the leadership style in the commu-
nity. Table 4 presents and defines these dimensions.

For the selection of participants, we used random sam-
pling with the exception of the Linux Kernel, where we
used “respondent-driven sampling” [13]. We recruited three
maintainers from the community and asked them to recruit
other participants by circulating the invite to participate in
the survey. This choice is due to the constraint exercised by

TABLE 5: The study hypotheses

ID Hypothesis statement

H1 The Coala community adopts a lenient style of governance for
its pull request process.

H2 The Linux Kernel community adopts a protective style of
governance for its code change process.

H3 The Coala community is more lenient than the Linux Kernel
community

H4 The FOSSASIA community adopts an equitable style of gover-
nance for its pull request process.

H5 The Odoo community adopts an equitable style of governance
for its pull request process.

H6 Each of the 15 FOSS communities adopts a governance style,
either protective, equitable or lenient, for its pull request process.

the community to prevent unsolicited messages coming from
outside the community. For the other communities, we used
“Simple Random Sampling”; Ghauri and Gronhaug explain
that this sampling implies that “every case of the population
has an equal probability of inclusion in sample.” [14] We
used various techniques to implement this sampling strategy
(see data collection sub-section below).

We sought the participation of maintainers and contrib-
utors actively contributing to their respective communities.
The interviewees from Phase I did not participate in the
survey of Phase II. To control our sample, we asked whether
the visitor (to the survey first page) is an open source
contributor or maintainer, allowing the choice of both and a
negative response to both simultaneously. In the latter case
the survey was stopped. The participants have not been
compensated for participation.

Data Collection: We employed three techniques to
attract participants: direct emailing potential participants,
sending invites to mailing lists of the communities, and
posting in the selected community fora.

• Direct emailing: We used GitHub and GitLab to manually
search for potential participants in the selected com-
munities. We examined contributors’ and maintainers’
profiles of the selected communities and randomly
(without a specific logic) selected participants (active
contributors and maintainers). We approached a total of
211 contributors and maintainers using this technique.

• Invites to mailing lists: We sent invites to participate in
the survey to the available mailing lists. Some of com-
munities have multiple mailing lists. It was not always
possible to use all available lists, due to restrictions
on the content of messages. We managed to send 22
invitation emails using this technique.

• Invites in online fora: Five of the selected communities
use online discussion fora (e.g., the ROS community
discussion forum at https://discourse.ros.org/). We
posted invitations in the fora of ROS, FOSSASIA, Coala,
Plone and OpenSUSE. In some cases, we first had to get
the forum’s administrator permission to post an invite.

Behavioral research rarely justifies quantitative sample
sizes [15]. While we do not know the response rate, we
are convinced that the obtained set of responses is of
very high quality, and likely to represent opinions of the

TABLE 4: The dimensions used to select FOSS communities for the survey (purposive sampling)

Dimension Definition Examples from our cases

Products The products developed by a community. We aimed for
a sample including various types of software products.

Operating systems (Linux Kernel), content management systems
(Plone), robotics software (ROS), web libraries (JQuery), etc.

Demographics The ethnicity, age, and (national) culture of contributors
and maintainers.

We aimed at diverse demographics. For example, FOSSASIA has pre-
dominantly south east Asian contributors. The Linux Kernel and ROS
communities attract mostly contributors from Europe and North Amer-
ica. Other communities like Odoo and Apache are globally distributed.

Size The number of contributors (including maintainers)
estimated by GitHub/GitLab (The Linux Foundation
estimate for the Linux kernel).

We selected communities with sizes ranging from large to small. The
Linux Kernel reports 15,600 contributors, ROS has 5,600 and JQuery
has 275.

History The history of the community, its inception and devel-
opment, possibly influencing behavior, attitudes, norms,
and social contexts.

The ROS community started as a research project, evolved to a start-up,
and later progressed into an open source community. FOSSASIA had
evolved from a movement for “social change” advocated by three open
source enthusiasts in south east Asia.

Leadership
style

The style that the community leaders impact on the
population of contributions.

While Linus Thorvalds (the Linux Kernel) is characterised as a
“Benevolent dictator”, other communities follow more meritocratic
systems.

https://discourse.ros.org/

5

involved FOSS community members. We used dedicated
and reliable community channels. Participation in the
study was voluntary, there was no hidden, or monetary
incentive to attract responses. Given these conditions, the
set of responses is considerably large. We received 473
responses. The survey data are available at https://github.
com/itu-square/statistical-analysis-foss-governance-styles.

We validated the responses using the following criteria:
1) The respondent must be an active contributor or main-

tainer in one of the selected FOSS communities,
2) All mandatory questions have been answered with valid

input, and
3) Only one entry is allowed per respondent, controlled

using IP addresses.
Participants who failed the check were excluded, leaving
N=387 valid and complete answers.Out of these answers, 188
are from maintainers and 199 from contributors. Governance
style questions (v27 - v33) are maintainer specific, and they
were not available for non-maintaners.

We used Bayesian statistics, also called explicit probabilistic
inference, to analyze the quantitative data. This method
provides formal means of dealing with uncertainty in sci-
entific inference, by approximating unknown parameters
using probability distributions. A Bayesian analysis begins
with modeling prior distributions, capturing pre-existing
knowledge of the problem. When new evidence is collected,
the analysis reallocates probability in the model to revise
the prior beliefs. To answer yes/no questions, we often
use a simplifying abstraction of High Density Interval (HDI).
The HDI describes the range of most credible conclusions
accumulating 95% of probability mass. This limits the chance
of erroneous conclusions to 5% [16]. For further robustness,
a magnitude of effect can be identified known as the region
of practical equivalence (ROPE). The ROPE is a decision
threshold that is chosen in the context of current theory
and measurement precision. If the ROPE, or region of values,
does not include the high density values, then the value is
rejected, but if the ROPE completely includes 95% of the high
density values, the value is accepted because the high density
values are the most credible values [16]. This allows Bayesian
analyses to both accept and reject hypotheses, unlike in
frequentist statistics.

Prior to analyzing the data, we linked the PR governance
styles to the survey questions as shown in Tbl. 6. A response
was categorized as positive if the 95% HDI falls entirely
below 3 on a linear scale derived from the scale: 1 strongly
agree, 2 agree, 3 neutral, 4 disagree, 5 strongly disagree.

In order to test the hypotheses of Tbl. 5, we use Bayesian
inference to estimate the underlying distributions of the
responses that each FOSS community gives to each question
v27–v33 employing ordinal regression; the standard model
for analyzing Likert data [5, Chp. 23]. We assume that the
answers to the questions are normally distributed (Gaussian
likelihood function). We use a neutral prior, letting the
inference find the values of the parameters for the underlying
distribution that best accommodate the evidence from each
community. This is appropriate as there are no preexisting
studies of PR governance in FOSS to inform the prior.
Our subjective understanding of the problem based on the
qualitative analysis has instead informed the structure of the
model and the choice of the hypotheses. We implemented

the analyses in PyMC3 [17], a state of the art package
for Bayesian statistical modeling. The Jupyter notebook is
available in the paper data repository, linked above.

3 FINDINGS

3.1 RQ1: Decision Making in PR Evaluation

We identify three archetypical styles of governance that have
strongly manifested in the qualitative data: (1) lenient, (2)
protective, and (3) equitable. Table 8 summarizes which
governance styles are present in communities as identified
during qualitative analysis.

Lenient Governance Style

The lenient style of PR evaluation is tolerant and compas-
sionate, prioritizing growth and openness of the community.
The lenient governance style was prominent in the data
collected from Coala. Interviewee 27 explained, “we accept
errors. Instead of rejection, we embrace the enthusiasm of the
contribution.” “My first PR was reviewed 65 times but not rejected”
(Interviewee 26). The community invests in the contributors’
abilities by mentoring them on how to prepare PRs that meet
the quality standards. This investment has to pay off at one
stage, as Interviewee 27 clarifies: “You can’t spoon-feed the devel-
opers all the time either. They have to demonstrate their abilities”.

The lenient governance rests on the belief that no contribu-
tion should be ignored. Each contribution carries enthusiasm
that should be leveraged for the benefit of the community.
Interviewee 26 says “we have a rule in our community that
we never, ever reject a PR. Instead, we manage the contribution
and improve it. We make every PR mergeable.” Another said,

“rejections kill motivation and, it is a rude thing. We instead steer
the contribution to a positive direction by making it better, and
get it merged” (Interviewee 18). Lenient communities, do not
compromise on quality—they ensure quality by mentoring
contributors to elevate their contributions to mergeable
standards. DuckDuckGo and Coala communities appear to
be lenient based on the interviews.

We investigated the distribution of answers to v33 from
Coala (H1).1 To this end, we look at the distribution of

1. The participation of DuckDuckGo in the quantitative survey of
Phase II was too small to permit statistical analysis.

TABLE 6: PR governance styles defined by survey questions

Protective: A community is protective when it responds pos-
itively to at least one of the questions v27 (“In general I say no
to most pull requests (PR)/patches”), v28 (“I don’t consider a pull
request/patch, unless I trust the contributor”), v29 (“I don’t consider
a pull request/patch, unless the contributor is reliable.”), and v30 (“I
don’t consider a pull request/patch, unless I have a strong relationship
with the contributor.”).

Equitable: A community is equitable when the response from
this community is positive to at least one of the questions: v31
(“I assess every pull request/patch in the same manner irrespective of
the contributor.”) and v32 (“I assess pull requests/patches purely on
technical grounds.”).

Lenient: A community is lenient when the response to Question
v33 (“I never say no to a pull request/patch. If the quality of the
PR/patch is not mergeable, then I mentor the contributor to elevate
his/her PR/patch to a mergeable state.”) is positive.

https://github.com/itu-square/statistical-analysis-foss-governance-styles
https://github.com/itu-square/statistical-analysis-foss-governance-styles

6

the mean for v33, the central tendency of the answers for
the community. The distribution of the mean for lenient
communities should be shifted towards low values, with
concentration below 3 (Tbl. 6). Figure 1 shows that for Coala
98.8% of the density is below 3, and the entire 95% HDI,
specifically (0.93,2.6), is below 3. We consider a ROPE of
size 0.8 (from 2.6 to 3.4) which does not overlap with the
HDI. We conclude that, given a ROPE of (2.6,3.4), the Coala
community has a tendency towards a lenient governance
style also in the survey data, and H1 holds.

The adopters of Lenient governance style are concerned
with reducing social barriers. They assume that every
contribution can be elevated to a mergeable state.

Protective Governance Style

This style of pull request evaluation is defensive. Our
interviewees reported that during the evaluation process

TABLE 8: The studied communities PR governance styles

Community Protective Equitable Lenient

FOSSASIA ✓
Odoo ✓
DuckDuckGo ✓
Linux Kernel ✓
Coala ✓

values such as trust, relationships and the reliability of the
contributor are considered. The Linux Kernel community
describes it as “no, by default.” In this community, the
contributions are often either not thoroughly evaluated or
rejected without due diligence. Interviewee 24 stated, “I
communicate with the maintainer a lot. In general, he says no,
unless he cannot say no. You know that is kind of his philosophy. I
saw this view elsewhere in the Linux community.” Winning the
approval of the gatekeeper is critical. It requires persistence
and accumulated trust (reputation). Interviewee 20 says: “It’s
easy for me to get patches in because people in this community trust
me and know who I am. Basic patches just go in easily because the
maintainer trusts me. He knows that I will be around. If I submit a
big chunk of code, and he does not know me, I may just disappear.
Maintainers are very conscious about whether I know this guy ...
the maintainer has to trust that the person will be around.”

This attitude appears to be a gate that signals specific
beliefs, such as the fact that commitment to the community
must be demonstrated by the potential contributor, and
winning the approval of the gatekeeper is critical. This
trust between contributor and gatekeeper comes from an
ongoing relationship between the two individuals that
exhibits trustworthiness. Once the contributor succeeds in
dealing with the “no”, then, the contribution is evaluated for
its technical merits: “On some parts of the kernel building trust
is essential, and there is a clear social entry barrier. It has some
downsides for beginners. Yet it’s understandable, as changes in the
kernel always come with some kind of maintenance overhead, and

TABLE 7: Examples of categories and themes with definitions

Category Code Definition Example of verbatim

software
engineering
principles

quality Quality is a subjective concept to FOSS contributors. This
subjectivity is offset by reaching a consensus about when
a piece of code make a “quality” contribution.

I am not sure there is a specific way to assess quality. We can read
through the code and we know good code from bad code. It’s quite subjec-
tive. However, in our community, there is a requirement for a minimum
3 reviewers to approve code. That makes it objective. Interviewee 28

avoid
technical
debt

Technical debt is the owing inherited from a contribu-
tion when it doesn’t meet certain quality and design
requirements.

I will not add something that increases my maintenance burden unless
it’s very compelling functionality or an obvious bugfix. I can’t maintain
a system I don’t fully understand, so I like keeping things lighter and
cutting off edge cases rather than adding technical debt I don’t have
time to pay off. Interviewee 8.

social
norms

trust Trust is the unyielding belief that the person is truthful
and reliable.

There are obviously criteria that have to do with the contributor, I
would mainly look for reliability and trustworthiness of the contributor.
Interviewee 9.

mentoring Mentoring is establishing a support relationship between
a mentor and a newcomer. A mentor partners with a new-
comer during their early period of engagement with the
community. She offers advice and guidance to help foster
and promote the development of the newcomer. The men-
tor knows the community, its products and processes, and
can be an effective source of advice and encouragement.

I had a mentor for 3 years. He helped me to become a better developer
and an effective member of the community Interviewee 27

pull
request
governance

protective Protective means designed or intended to guard or
shield the code base from undesired and low quality
contributions. It operates based on trust, relationship
building and the contributor’s reliability.

It’s easy for me to get patches in because people in this community
trust me and know who I am. Interviewee 20

equitable Equitable means fair and impartial, all contributions are
judged for their technical merits and suitability for the
community product’s vision.

Contributions are assessed fairly and based on their quality not
the contributor. Sometimes, it feels transactional and unsupportive.
Interviewee 9

lenient Lenient means tolerant for errors but at the same time it
does not compromise quality. Contributors are mentored
to elevate the quality of their contribution to mergeable
standards.

When I joined the community, my pull requests were not rejected.
Instead, I was shown by the mentor how to improve them and make
them mergeable. Now, I produce high quality code, because I learned.
Interviewee 27

7

0 1 2 3 4

0.93 2.6

95% HDI

mode=1.7

98.8% <3< 1.2%

2.6 3.4

Fig. 1: Mean distribution for v33 of the Coala community

0 1 2 3 4 5

V27
V28
V29
V30

(a) Mean dists. for v27–v30

0 1 2 3 4

0.32 3.1

95% HDI

mode=2

98.4% <3< 1.6%

(b) Pr(min(v27, v28, v29, v30))

Fig. 2: Protectiveness Analysis for Linux Kernel

maintainers want people that have proven to take ownership of
their contributions ... However, once a patch is considered, then it
goes through thorough vetting” (Interviewee 24).

Hypothesis H2 is set up to check how widespread this
behavior is in the Linux community. We analyze answers
to questions v27-v30 that reveal the traits of protectiveness
(cf. Tbl. 9). We will conclude that a community is protective
if at least one of v27-v30 receives predominantly positive
answers. The mean answers should be distributed in the low
part of the scale, with density concentrated below three.

Figure 2a shows that distributions of v28 and v29 are
predominantly located in the interval [0,3], indicating that
the Linux Kernel community indeed shows strong protective
tendencies (data from 19 respondents, with a hierarchical
model inferred using the answers of maintainers). To increase
confidence, we plot the distribution of the minimum of mean
answers for the four questions, which captures whether a typ-
ical Linux respondent exhibits at least one protective position
(answer). Figure 2b shows that 98% of the density is below 3,
and the 95% HDI is within the interval [0,3.1]. Thus the Ker-
nel community shows a clear tendency towards protective
governance. However, the tendency is not radical, with some
overlap with neutral answers (≥ 3). There are noticeably
many respondents who do not exhibit protective attitudes.
This might be a manifestation of transitioning towards a less
protective governance style—a claim supported by the mean
distributions for v27 and v30 (Fig. 2a) and open online debates
of exclusivity and governance in the Linux Kernel project.

The adopters of the Protective choose to rely on trust,
relationship building and the contributor’s reliability.

The interviewees portray the Kernel community as pro-
tective. Prioritizing trust, reliability, and the contributor-
maintainer relationships appears to be distinctive of this
community. However, the quantitative analysis uncovers
that the community is not uniform on this issue. Some of

our interviewees did admit that the community is trying to
change its attitude toward contributing in general, which
could explain the mixed results. Interviewee 25 explains:
“getting a patch accepted in the Linux community can be difficult
for newcomers and unfamiliar names in the community. They have
preference for trustworthy contributors. This attitude is cascaded
from the top ... However, this is changing. I know a lot of sub-
system maintainers who want a community with less fences.”

Leniency of Linux versus Coala

To validate that the difference between the Linux and
Coala communities is not a random artifact emerging from
our sample, we studied hypothesis H3. We estimated the
distributions of the mean answers to question v33 exploring
the attitude towards mentoring. We computed the difference
between the mean and the standard deviation of the two
estimated distributions, and checked the effect size between
the two differences. The effect size is a standard method to
compare two estimated normal distributions [5].

Figure 3a shows the distribution of the answers. The
Coala community is more lenient than Linux. However, the
density for Linux is concentrated in the interval (2.5,3.5).
This means that the respondents from the Linux community
mostly opted for a “neutral” response to v33.

Figures 3b and 3c show the differences of distributions
of answers to v33, both the difference of means and the
effect size. In both plots, the density is mostly located in
the negative part of the plot. This means that the mean of
the answers of the Linux Kernel community is consistently
greater than that of Coala. The Coala community agrees
more eagerly with the statement v33 than the Linux Kernel
developers. We highlighted a ROPE of (-0.2,0.2) in the plots.
This region marks what values we consider equal to 0 in
practice. The HDI of both the difference of means and the
effect size are outside the ROPE. Hence, we can conclude that,
given a ROPE of (-0.2,0.2), there exists a difference between
the distributions of the answers of the Coala and Linux
Kernel communities validating hypothesis H3. The clear
difference in the survey data reassures us that the qualitative
analysis has identified a relevant general phenomenon.

These two communities diverge fundamentally in their
strategies for management and evaluation of contributions.
The choices are likely rooted in differences of leadership style,
and in the history and legacy of both communities. Setting
aside the rationale, we observe that each community adopts
a style that fits their needs and mirrors their social anatomy.

Equitable Governance Style

The equitable governance style believes in being fair and
impartial regardless of who is the contributor. It is transac-
tional in nature. The evaluation of a PR is concerned more
with technicalities and less with social aspects. Interviewee 3
states: “We try to be very impartial, we try not to make interactions
very personal because code change isn’t about friends it’s not about
being friendly it’s about managing a technology. And so there is a
very straightforward mechanism of submitting code changes.” This
was echoed by many interviewees in several communities,
for example: “It’s very transactional, and that’s just one way of
doing it and it’s a way that we like because it keeps personalities
out of it and it makes rejections not personal ... Yes we tend to keep
personalities to minimum” (Interviewee 9).

8

0 1 2 3 4 5

Linux Kernel
Coala

(a) Coala vs Linux Kernel mean dists.

2 1 0

-2.1 -0.29

95% HDI

mode=-1.3

98.6% <0< 1.4%

-0.2 0.2

(b) Difference of mean dists.

3 2 1 0 1

-2.8 -0.22

95% HDI

mode=-1.5

98.6% <0< 1.4%

-0.2 0.2

(c) Effect size

Fig. 3: Comparison of answers to v33 (leniency) for Coala and Linux Kernel

0 1 2 3 4 5

V31
V32

(a) Mean distributions for v31, v32

2 0 2 4

-1.5 1.3

95% HDI

mode=0.58

100.0% <3< 0.0%

(b) Pr(min(v31, v32))

Fig. 4: Analysis of equitability for FOSSASIA

0 1 2 3 4 5

V31
V32

(a) Mean distributions for v31, v32

2 0 2 4

-1.4 3

95% HDI

mode=1.6

99.2% <3< 0.9%

(b) Pr(min(v31, v32))

Fig. 5: Analysis of equitability for Odoo

In this style, the community principles, for evaluating a
contribution, overrule any leniency toward contributors, but
rejection is not applied lightly; it bears a social responsibility.
Interviewee 7: “Rejections of pull requests are a social responsibil-
ity and are taken with a fairness in mind.” The community
exhibiting an equitable style applies a set of principles
seriously during the evaluation process. Interviewee 8: “There
are principles for evaluating pull requests, and we religiously obey
them...and we will usually reject a pull request if it doesn’t hold
up to these principles.” FOSSASIA and Odoo appear to be
equitable. To check whether a larger population confirms this
we tested H4 and H5.

To test H4 and H5, we analyze the answers to questions
v31 and v32. We say that a community adopts an equitable
governance style if it responds predominantly positively to
any of these questions. We follow the same method as for
the leniency and protectiveness analyses above. The plots in
Fig. 4a shows that FOSSASIA exhibits equitable governance
tendencies. The density of both distributions is well below
3; in fact, both modes are below 2. Similarly, most of the
density of expected answers for Odoo are located below 3,
but, in this case, there is non-negligible amount of the density
located above 3 (Fig. 5a).

To further affirm this finding, we plot the minimum of the

mean distributions (Figs. 4b and 5b). The plot of FOSSASIA
clearly indicates the equitable style. The 95% HDI is well
below 3, in fact the right limit is 1.3. Almost all members of
the community strongly agree. We observe a similar curve for
Odoo: the 95% HDI is mostly below, but includes 3. However,
the answers are more widespread than for FOSSASIA. The
right limit of the 95% HDI interval is 3; indicating that there
are some participants that lean towards neutral answers. Still,
we conclude that H4 and H5 hold.

The adopters of the Equitable governance styles value
fairness towards contributors and rigorous application of
community principles.

Governance Styles across 15 FOSS Communities

H6 compares the level of protectiveness, equitability and
leniency of the communities in an aggregated fashion. We
use a ternary plot that translates 3-coordinate points into
an interior of equilateral triangle. For each community we
establish the probability density below 3 for the respective
questions (protective Pr(min(v27, v28, v29, v30)<3), equi-
table Pr(min(v31, v32)<3)) and lenient Pr(min(v33)<3).
This characterizes each of them with a triple of numbers
between 0 and 1. We normalize the points to sum to 1 and
plot in a standard ternary plot.

Most communities exhibit a balance between equitability
and leniency. A cluster is formed in the center of the left edge,
seemingly equidistant from the lenient and equitable corners.
The answers from communities located on the altitude line of
the protective vertex balance equitability and leniency. The
closer a community is to the protective vertex, more protec-
tive it is. For instance, Linux Kernel is the most protective.
If H6 held, we should observe clusters of communities in the
corners of the triangle, which is not the case.

Admittedly though, the extent of the triangle in Fig. 6a
is arbitrary. The corners represent extreme positions. For a
community to be placed, say, in the equitable apex, all its
members have to answer the equitability questions strongly
positively and all the other questions strongly negatively.
This is unlikely to happen for independent human subjects
answering orthogonal questions. Perhaps the triangle should
be drawn larger or smaller reflecting not the absolute
position of tendencies on the Likert scale, but rather the
relative differences of tendencies between communities?

Figure 6b re-scales the ternary plot. Intuitively, it “zooms
in” into the central part of Fig. 6a. We identify the smallest

9

FOSSASIA

ROS

Coala
Mozilla

Linux Kernel

OpenGenus
ReactJS

Plone
Odoo

AngularJSNodeJS

Apache

jQuery

OpenSUSE

Equitable

Lenient Protective

(a) Ternary plot of all FOSS communities vs styles

FOSSASIA

ROS

Coala Mozilla

Linux Kernel

OpenGenus

ReactJS

Plone
Odoo

AngularJS
NodeJS

Apache

jQuery

OpenSUSE

Equitable

Lenient Protective

(b) Re-scaled ternary plot of all FOSS communities vs styles

Fig. 6: Comparison of all governance styles among FOSS communities

mean answers to equitability and leniency across all commu-
nities and use them to define the triangle’s extremes. Thus,
instead of defining the governance style in an absolute way
(as a value of an answer on a Likert scale), we now define the
styles relatively (as the difference between answers by com-
munities). For example, the reference point for equitability
becomes the community that is the most equitable in our sample.
This way of interpreting the data is more robust with respect
to the formulation of the questionnaire. The case analysis of
extremes presented above in the section, confirms that these
relative differences are meaningful with significant effects,
not just due to random noise so amplifying them is justified.

The scaled figure reveals the differences in governance
style in the communities under study. Two are clearly biased
towards a single style: ROS (equitable) and Linux Kernel
(protective). The others are still located along the altitude of
the protective vertex, slightly shifted towards leniency. This
means that behaviors reported in the answers from these
communities still balance leniency and equitability, with
a slight preference towards the former, while we observe
quite a range of attitudes towards protectiveness. We cannot
confirm H6, but learn instead, somewhat expectedly, that
a model with three extremes is too simple to characterize
complex behavior in a discrete way. Nevertheless, its
continuous and relative interpretation provides interesting
and valuable insights.

In summary, the Coala community follows a lenient style
of governance for its pull request process both according to
the qualitative and the quantitative data (H1). Similarly, the
Linux Kernel exhibits a protective style both in interviews
and the Bayesian tests of H2. The Coala community is more
lenient than the Linux community (H3). FOSSASIA (H4)
and Odoo (H5) are examples of an equitable governance
style for PR evaluation. Finally, the analysis of Hypothesis
H6 revealed that across the communities adopting a style
is more a matter of degree than a unitary discrete choice.
Some communities show a clear preference, but a mixture of
equitable and lenient attitudes is most common.

As seen in the analysis of data for H6, the governance
styles do not induce an exclusive taxonomy of governance in
PR evaluation in FOSS communities. A community cannot
be confined to a particular style. Rather the styles define

archetypical dimensions, exhibited to a different degree in
the studied communities. Some communities show stronger
inclination towards one style and not the others (e.g., ROS
and Linux Kernel). The equitable and lenient styles co-
exist and complement each other’s in most communities.
Leniency can be either a collective choice (e.g., Coala) or
an individual choice adopted by a group of maintainers
and not necessarily shared by the majority of maintainers.
Furthermore, FOSS communities are not static social systems.
Like any social systems, they experience changes over
time. In some communities the governance style can be
cemented (e.g., ROS) but in others the governance principles
undergo changes (e.g., FOSSASIA) that further contributes
to the observed mix. This observation is consistent with
the interview data, for example interviewee 2 says that his
community was rather lenient but it has experienced growth;
this has influenced maintainers and senior community
members to become more equitable that confirms that the
community is experiencing change. He stated: “When I
join the community, we use to mentor newcomers and less
experienced contributors mainly students. We help them and
avoid rejections as much as possible to encourage them to
stay and contribute more and hopefully become better. In the
last couple years we experienced so much growth, we attract
a lot of people. We just have no time to help and mentor.
We have more contributors and less maintainers. We become
rather strict with people. The code has to be good and meet
our expectations. But some maintainers still prefer to mentor
when they have time.”

Each FOSS community has different culture, history,
leadership, and values. Our analysis confirms that FOSS
communities are not equal. The governance style exemplifes
their believes, norms and culture. It influences the decision-
making mechanisms in the PR evaluation process. Commu-
nities can also show a mixture of attitudes and undergo
migration between the styles in this space.

Researchers suggest that socio-technical factors interfere
with perceived strategic governance. Code reviewers in-
terpret social signals more than they are willing to admit
[18]. While reviewers focus mostly on code (64%), they also
consider technical (28%) and social signals (17%). Developers
should stay aware of their image in the community. Complet-

10

ing an online profile and projecting a consistent image, best a
photograph, on social networks helps to associate trust with
an identity. Identity is very important in today’s open source
communities [18]. The protective and lenient PR governance
styles admit that not only the code but also the person matter.
The equitable style focuses solely on code. “the quality is more
important than the person” (Interviewee 6).

Still, all styles share the concern for safeguarding quality.
Interviewee 25 explains: “the willingness to insist on quality is
key to the success of PRs processes in FOSS projects.” “The process
in place seeks the best. The best code quality possible” (Intervie-
wee 20). Governance itself ensures consistency and repeatabil-
ity, not the individual styles. A consistent governance creates
a culture of excellence, contributing to the sustainability of
FOSS products’ quality. Interviewee 2 explains: “The quality
is the main driver that drives our decision to either accept or reject
a PR. The processes are there to support and control the decision-
making. (...) First reliability of the code. Open source is ever
changing, people come and go. High quality code and the ability
to read the code and understand it is critical.” This sentiment
is echoed across the styles; a voice from a lenient project:
“We keep contribution’s code quality in the check, but at the same
time we are trying to be lenient towards contributors to really
help them out to get the codes to the level where it can be merged”
(Interviewee 29). A sustainable quality culture emerges.

3.2 RQ2.1: Software Engineering Principles in Evaluating PRs

In the three styles of governance, once the PR is considered,
it goes through an evaluation against a set of software
engineering principles. The proposed change must also add
clear value to the project. As this interviewee explained, “We
measure the success of a pull request by its ability to add value to the
application or the community. It could be for example a legitimate
feature, a payment of technical debts, etc.” (Interviewee 27).

There is a strong belief among the studied communities
that quality is supreme, and quality is seen as a necessary
feature of pull requests. Interviewee 15 stated, “In open source
projects, we like to achieve higher code quality because it is open
source and we will need to get good quality code.” Another one
asked how he evaluates PRs, he replied, “quality, quality,
quality ... it always comes first” (Interviewee 3). Interviewee 20
went so far as to claim that “there are people who give up; not
everybody can write the required quality of code.”

In the studied communities, quality is achieved by
the adherence to seven principles: (1) PR atomicity, (2)
maintainability, (3) avoiding technical debt, (4) passing
peer code review, (5) compliance with best practices, (6)
documentation, and (7) passing tests. These principles are
not always documented and communicated. However,
reviewers are aware of them and claim to rigorously apply
them. In the words of Interviewee 8: “we have a well-established
set of principles by which we evaluate PRs and we say ’no’ when
a PR doesn’t meet our standards.”

PR Atomicity

Atomicity is the requirement that the PR should be composed
from relatively independent parts that can be understood
separately and possibly reused. Our interviewees are aware
of the PR atomicity as a quality criterion, and make it clear
that atomicity is a key aspect of quality. “A pull request should

be addressing one atomic concern and not more” (Interviewee 27).
“Messy and bulky code is no good in open source” (Interviewee 9).
“Anything more than 50 lines of changes, and my brain doesn’t have
the capacity to do a good code review” (Interviewee 8). Atomicity
is deeply ingrained in the technical principles they follow.

Maintainability

Coleman et al. [19] define maintainability as “the ease with
which a software system or component can be modified to correct
faults, improve performance or other attribute, or adapt to a change
in environment.” FOSS developers in our sample are aware
of of the relevance of code maintainability in the evaluation
process: “this is open source, we have to keep maintainability
in mind all the time. The code must be neat and tidy and cater
for long term changes” (Interviewee 8). Maintainability also
includes taking the long-term sustainability: “so many projects
get derailed by accepting too many new features without evaluating
them for long-term maintainability, and it is a problem that is
avoided by a simple two-letter word—no” (Interviewee 24).

Technical Debt

The term “technical debt” describes a universal problem of
software engineering: how to balance immediate value with
long-term quality. The term refers to a programming shortcut
taken to save time at the cost of creating inadequate code. The
debt accumulates and causes increasing cost in terms of fu-
ture maintenance and evolution. Debt may be accepted delib-
erately and then monitored and managed over time. Architec-
tural choices are the major source of technical debt, especially
in context of fast delivery of features at limited budget [20].

Several interviewees are aware of technical debt and its
effects. They actively avoid it. “I will not accept something that
increases my maintenance burden ... I can’t maintain a system
that I don’t fully understand, so I like keeping things lighter and
cutting edge. I strive to avoid technical debt, which we do not have
time to pay” (Interviewee 17). Our data confirms that main-
tainability and technical debt are tightly connected. Avoiding
debt improves maintainability and assuring maintainability
means avoiding technical debt.

Peer review

Before a code contribution can be accepted into a repository,
it must receive a positive review by (usually) three to
five reviewers. “We have a definite principle that we have five
reviewers that must approve the pull request” (Interviewee 4).
Each reviewer examines the code visually and subjectively
to assess its quality. Reviewers provide necessary feedback.
If the submitted code does not meet the reviewers’ judgment
of quality code, it enters cycles of iterative improvement
until it is deemed good enough [21]. The studied FOSS
communities believe that peer review is the mechanism
that assures quality, that it is a valuable quality assurance
practice. Peer code review is religiously adopted in the
studied FOSS communities. “There is no PR assessment without
code review obviously. We have this non-negotiable rule that every
PR must pass code review” (Interviewee 1).

Best practices

The studied communities have agreed on best practices for
the programming languages they use. During the evaluation

11

Fig. 7: Engineering criteria in evaluation (all respondents)

of PRs, reviewers make sure that these best practices are
followed. “Pull requests reviews must follow the community
best practices” (Interviewee 4). In some communities, best
practices go beyond the coding conventions and guidelines.
For example, in FOSSASIA, the contributors’ conduct is also
covered with a best practice evaluation. “First thing is when
we sign up for FOSSASIA contributing, there is a list of rules that
we have to follow, and these include being nice to people who are
around you, and secondly is the code and standards for the code.
The next thing is that we do not merge anything and everything
that comes to the repositories” (Interviewee 5).

Documentation

In FOSS communities we studied, the documentation
usually explains how the code operates, how decisions
are made during the programming, and how to use and
amend the code. “We really focus on documentation because we
believe a project can strive in a community with knowledge being
documented” (Interviewee 3).

Tests

The studied communities employ various types of testing,
including unit testing and integration testing with continuous
integration. During PR reviews, reviewers check if the PR
has passed the necessary tests. “We make sure there are proper
tests to verify that a pull request works as expected. Pull requests
will not be accepted without the proper tests” (Interviewee 27).

Once a PR is considered for a review, software engineering
principles are applied to assess its eligibility for merging.

The qualitative analysis of the engineering principles aligns
with the quantitative data of Phase II. We observe (Fig. 7)
that all the above principles are important for majority of
the respondents across all communities. Still, the differences
between the importance attached to the various aspects of
quality are quite interesting. For example, passing existing
tests is almost universally required and almost equated to
quality (same acceptance rate). This may be caused by the
fact that this is a relatively easy criterion for assessment,
especially if continuous integration is used. The remaining
quality aspects are perceived with roughly similar weight

(technical debt might by undervalued, as the term is less
commonly known in some communities).

3.3 RQ2.2: Social Norms in Evaluation of Pull Requests

“Norms are properties of a group, they describe the typical or
desirable behavior of a certain social group” [22]. Individuals
know what behaviors are expected of them as social
norms are communicated through explicit verbal messages
and model behaviors. Those not abiding by social norms
are identified informally by social cues such as being
isolated or rejected. Social norms are powerful and
effective, and they are less resource intensive than incentive
based or punishment systems [22]. We identified three
social norms regarding PR evaluation in our data: trust,
contributor-maintainer relationships, and mentoring.

Trust

Trust is the willingness of the community to rely on the
contributor, a precondition for considering her code change.
This principle is unique to the protective governance style.
We observed this in the Linux community: “Changes to the
kernel can be complex! I need to be able to trust the contributor to
the point that I know he will be around to take ownership of the
code” (Interviewee 24). Establishing trust requires time, which
creates a barrier for newcomers. Other communities seem
to have addressed this barrier and aligned the principles
to create trust. “We don’t have entry barriers, but we ask the
newcomers to obey our principles” (Interviewee 30).

The requirement of prior trust within Linux is supported
by quantitative data. Approximately 47.37% of those
surveyed agreed that trust is important in accepting a pull
request and 57.90% think the reliability of the contributor
is an important factor. In the other communities only 6.95%
said that trust was important to accepting pull requests and
11.23% of respondents said that reliability was important.

Contributor-Maintainer Relationship

A prior relationship with the maintainer is an advantage
when getting a pull request evaluated. Interviewee 21 recalls:
“What helped is that I meet these people in person. It’s a basic human
thing. When you meet a person, it’s not like a mailing list. Actually,
it’s a physical thing; you release a chemical called oxytocin.”
Interestingly, just 31.58% of the respondents from the Kernel
community agree that a relationship with submitters affects
acceptance, despite that qualitative data emphasizes its
importance. Strikingly though, only 3.21% of respondents,
from the other communities, indicated relationships as
important in other communities.

Mentoring

Mentoring is a practice used to help less experienced
contributors to meet the community standards. Experienced
community members and evaluators work with the
contributor to improve her submission. This encourages
additional submissions from this person, and other observers.

Mentoring was observed in FOSSASIA, Coala, and
DuckDuckGo among others. “Pull requests that cannot be
merged require mentoring. We have enough patience to work with
the contributor to get it into a mergeable state. We mentor the
contributor to do so” (Interviewee 13). All Coala community

12

respondents stated that they mentor contributors (100%). In
other communities, the corresponding fraction was 63.21%.

Trust, the contributor-maintainer relationship, and
mentoring are norms exercised in PR evaluation.

3.4 RQ2.3: Product Vision in Evaluation of Pull Requests

Some communities define a roadmap for their product and
document it. During the evaluation of PRs, the proposed
change is assessed whether it fits within the defined roadmap.
“We do not like to say no but we do to protect the evolution of the
project” (Interviewee 9). In our survey, 65.24% of the main-
tainers agree or strongly agree that they would reject a PR
that does not fit within the roadmap set by the community.

The changes introduced in a PR must adhere to the
community roadmap for its products, in order to increase
chances of acceptance.

3.5 Governance Styles, Engineering Principles, and Social Norms

To examine the interplay of governance styles, software
engineering principles and social norms, we computed
Pearson’s correlation coefficient for the answers to all pairs
of questions related to governance styles (v27-v33), software
engineering principles (v47-v53), and social norms (v54-v56).
This coefficient allows us to determine whether there is a
linear correlation between the questions. Pearson’s coefficient
is a value from -1 to 1. Values close to 1 or -1 indicate a
positive or a negative linear correlation, respectively.

Figure 8 illustrates the correlations. Whiter cells indicate
absence of correlation (0), dark brown or blue cells show posi-
tive (1) or negative (-1) correlation, respectively. We arranged
the figure into several sections corresponding to the group of
variables of interest. The middle-left square shows the corre-
lation between governance styles and software engineering
principles, the bottom-left conveys governance styles and
social norms, and the center-bottom indicates the correlation
of software engineering principles and social norms.

Interplay Between Governance Styles and Software Engineer-
ing Principles: Governance styles do not favor any particular
software engineering principle, as indicated by the low
correlation values of the middle-left section in Fig. 8. It
appears that the principles are universal, applicable to
all FOSS communities in our sample. All communities
are committed to high engineering standards and quality
irrespective of their norms and values.

Interplay of Social Norms and Software Engineering Principles:
Social norms do not appear to favor any particular software
engineering principle either; see the low values in the
center-bottom section. This is expected, given the governance
styles are clusters of these social norms. This also asserts the
parallel between the governance styles and social norms.

Interplay of Governance Styles and Social Norms: We eval-
uated the correlations between the social norms underlining
the protective style and the norms forming all styles. The
dark brown cells connecting (v27-v30) and (v54-v56) suggest
a relatively strong inclination of the protective style towards
norms such as trust, relationships and reliability. On the
other hand, the cells connecting (v31-v33) and (v54-v56) take
on a blue coloration. This implies that the equitable and

V27 V28 V29 V30 V31 V32 V33 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56

V
27

V
28

V
29

V
30

V
31

V
32

V
33

V
47

V
48

V
49

V
50

V
51

V
52

V
53

V
54

V
55

V
56

Governance Styles

SE Principles

Social Norms

0.2

0.0

0.2

0.4

0.6

0.8

Fig. 8: Heatmap of correlations between questions related to
governance style, software engineering principles and social
norms. Darker colors indicate higher correlation.

lenient styles reject these norms (i.e., trust, relationships
and reliability). This conclusion cements our claims that the
protective style adheres to norms fundamentally different
to the ones preferred by the equitable and lenient styles.

4 DISCUSSION

Governance relate to the social interaction and decision-
making among the actors involved in a collective process that
creates, reinforces, or reproduces social norms and organized
groups [23]. Governance can be undertaken in any social
system (e.g., government, institutions, family and informal
organizations) [23]. The pull request governance styles have
a reason to exist. Some are well crafted strategies put in
place after years of trial and error learning. In all cases, these
governance styles impacts their respective communities.

4.1 Protective

The protective governance style may create a “clique” culture
difficult to access for newcomers. Newcomers may feel less
important than the established members of the community.
Yet the community always needs newcomers, as creativity
requires fresh minds and an ongoing flow of ideas and
new contributions. Ostracizing those who are not inside the
community may hinder its evolution and sustainability.

Still, the protective style helps to maintain tighter control
over its code. For example, in a community for which an
influx of newcomers is unimportant, or when it is high
anyways. Tsay et al. write that well-established and mature
projects are more conservative in accepting pull requests [24].
The Linux community is indeed a successful and mature
project. The kernel code is a, so called, “closed,” highly
optimized and integrated platform that requires heavy-
weight processes to evolve. This justifies a “centralized” gov-
ernance, where patches have to pass thorough reviews along

13

the maintainer hierarchy [25]. Tight control is particularly
beneficial if a project develops a highly technical system, with
a high barrier of entry, and high risk of critical problems.

Dabbish et al. report that both the contributor and the
community look for signals of commitment. Frequency of
recent submissions and the volume of activity by devel-
opers is a useful signal to the maintainer, while historical
activity allows potential contributors to infer how well the
project was managed. Visible actions on artifacts indicate the
intentions, competence, and experience of the developers.
Community support is inferred from the attention given,
such as following, watching, and comment activity [26]–[28].

Relationships were shown to influence the evaluation
of PRs. A chance of acceptance is higher for submitters
already known to the core members of a project [29].
Also, maintainers interact more politely in discussions with
core members than with new submitters [29]. The social
connections between members of each of these groups
can be measured on social distance and prior interaction
values. Strong social connections increase the likelihood of
acceptance, as they are markers of trust and allow to lower
the assessment and coordination costs [24], [30].

Some of the behavior, e.g., contributor’s reliability, un-
derlying the protective style could be a risk mitigation
for potential abandoned contributions. Li et al. find that
contributors are abandoned for personal reasons, e.g., lack
of time (36.6% of the study’s respondents) and lack of
interest (22.3% of the study’s respondents) [31]. Abandoned
contributions impact the evolution process of the community
product, e.g., cluttered PRs and misspent review effort, and
strains the maintainers efforts [31]. The Linux community
is one of the oldest FOSS communities; this protective
behavior could be a reaction to unpredictable contributors’
commitment to the community.

The unpredictability of contributors also impacts the
efficiency of the contribution process. Li et al. suggest that
behaviors, such as not checking for prior work and not
claiming a task before starting it, lead to duplicate pull
requests, further increasing the pressure on maintainers [32].
Still, social factors remain relevant when maintainers decide
which PR to accept when duplicates occur. Li et al. suggest
explain that maintainers may prefer evaluating either the
first to be submitted or the most “active” author.

4.2 Equitable

Although an equitable style of governance emphasizes fair
assessment, it does remain quite rigid. It might not be suitable
for communities that want to grow fast and attract new
contributors, especially those with limited programming
experience. Yet, this is the most visible style of governance
among the respondents overall.

The equitable style is attractive for experienced
developers who understand and incorporate advanced
software engineering principles into their PRs. However, it
does pose an entry barrier for newcomers. Steinmacher et al.
list the need for orientation and technical hurdles as one of
barriers for new contributors [33], [34]. Communities which
prefer this style of governance should communicate their
PR evaluation principles clearly through documentation and
other channels to help the contributors to comply.

4.3 Lenient

Mentoring contributors is a key part of the lenient gov-
ernance style. This style may help communities with con-
tributors with varied but limited experience in software
development. An acceptance of the first contribution is an
important step in a newcomer’s socialization. She can learn
the conventions and contribution rules through observation,
lurking, and direct mentoring from more experienced mem-
bers. Successful socialization allows potential contributors
to learn the project norms and to identify the core members,
where newcomers need to recruit allies [29]. After an initial
period of lurking, newcomers can assimilate the norms and
values of the community. Then they begin to build an identity
and become more visible to the core members, enrolling allies
in the community. Once they demonstrate that they have
the technical expertise, they are accepted by a community.
Then they become an insider, not simply crafting material
artifacts, but maintaining social relationships as well. They
become a maintainer of the project, coaching and mentoring
newcomers [35].

Attracting newcomers to communities is a major chal-
lenge. Fear of rejection that may harm reputation hinders
some from contributing [2]. Lenient communities are aware
of this issue and employ a strategy that minimizes rejections.
Project members should show empathy toward new contrib-
utors, be engaged, and demonstrate fairness and positive
attitude as mentors. Responsiveness and clear roadmap have
also been identified by others as important factors encour-
aging newcomers [2], [36]. Berger et al. define variability
encouragement as an open attitude to contributions from a
broader ecosystem [25], and observed that some very fast
growing ecosystems have openly and actively designed their
processes and architectures to encourage external innovation.

Sim and Holt explain that a major downside of mentoring
is that it is very time consuming for the senior developers
in the community [37]. To some extent, the time required is
compensated by attracting newcomers more easily.

4.4 Implications

Individuals’ behavior is strongly influenced by the social
group transmitted norms and values [38]. Social norms are
adhered to by the group reinforcement; individuals also
receive group approvals and rewards, when they follow
them and punishment when they violate them [38]. It
would be imprudent to suggest that a particular governance
style with its underlying norms is superior or acceptable
but not the others. One particular governance style cannot
be universally prescribed to all FOSS communities. The
underlying norms of these governance styles have reasons
to exist. However, we can point out the costs of these
governance styles on contributors participation and this may
influence communities leaders to promote different norms
for the betterment of their community. Leaders (e.g., senior
maintainers, community leaders, and founders) can harness
the power of social norms to enhance their groups behaviors
to deliver the best possible outcomes and experience for the
group’s members [39].

Participants motivation to join FOSS community literature
suggests that the underlying drivers are either intrinsic or
extrinsic [40]–[42]. Von Krogh et al. [43] explain the intrinsic

14

motives are ideology, altruism, kinship amity, enjoyment
and fun. Hars and Ou [41] further suggest community
identification being another intrinsic motive. The extrinsic
category hosts these sub-categories: reputation, gift economy,
learning, own-use value, career and pay [43]. Although this
literature is almost 20 years old, recent work [44] on the topic
suggests that some of these motives “stood the test of time.”
They even suggest that the social aspect of participation such
as kindship have become more prominent [44].

The protective governance style may alienate participants
who are driven by the desire to learn, kinship and community
identification. From this perspective, it is surprising that the
Linux Kernel community is so large (15,600 contributors).
Hertel and Niedner [45] explain this by identification with
the prestigious community of the Linux kernel being the
main motivation factor to contribute. Still, this governance
style is at odds with the fundamental values of open
source movement promoted by early pioneers (e.g., Richard
Stallman and Eric Raymond). Communities adopting this
style distance themselves from the true values of open source
movement. Stewart and Gosain [46] explain that helping and
cooperation are at heart of open source ideology. The cost of
this style is encouraging a drift from the authentic values of
open source movement and drive away those with a genuine
desire to learn, motivated by the non-economical behavior
like kinship, enjoyment and giving.

The equitable style was described by our participants as
being “glacial.” It attempts to decouple the contribution from
the individual under the assumption that PRs submission
and evaluation is purely a technical process. This may
not be entirely in-line with the motivation of those who
want to contribute to learn, identify with the community,
kinship and enjoyment. Its transactional nature is at odds
with expectation to help and cooperate. The cost might be
alienating those who come to the community with limited
experience in software development, especially applying
advanced software engineering practices such as modularity
of the code and submitting high quality code.

The lenient style seems to be strategically tuned toward
attracting new contributors to ensure ongoing influx of
contributions in order to survive as a community. However,
it would be idealistic to suggest that this style is a model
for FOSS communities. Mentoring generates a cost for
maintainers and mentors. Also, not every contributor has the
capability to bring his code to the desired quality. Less experi-
enced contributors and newcomers should be directed to start
working on less complex and easier issues. Communities
considering this style may go further and propose a learning
path to contribute for newcomers and less experienced
community members. We observed some of these practices al-
ready taking place in communities like Coala and FOSSASIA.
FOSSASIA suggests contributions for newcomers by labeling
issues “newbie-friendly.” Similarly, the Coala community
labels the level of issues’ difficulty from low to high.

Irrespective of contributors’ motivation to join the
community, community leaders should leverage the
participation to sustain their communities, invest in
retaining contributors for prolonged participation. Qiu et
al. investigated the relevance of building social capital to
prolonged participation amongst GitHub contributors [47].
Social capital is the set of advantages individuals gain from

their social networks [48]. Qiu et al. suggest that social
capital influences prolonged participation in open source
communities. Individual gains, such as exposure to new
technologies and ideas, contribute to building the social
capital and consequently results in long term participation
[47]. Communities leaders should encourage trade-offs
between the cost of collective social conducts and ensuring
ongoing and prolonged participation for sustainability.

As noted previously, social norms, are part of the so-
cial fabric in all cultures and social groups. Even though
particular norms vary greatly, people use group norms to
justify behavior, to provide order and predictability in social
organizations and to make sense of and understanding of
each other’s actions. Communities leaders can influence the
norms to minimize the cost on participation, nurture the
non-economical behaviors and align their communities with
the authentic values of open source. Below, we summarize
the implications discussed in this section.

Community leaders should take these costs (listed be-
low) and weigh them in the context of their particular
community. What is more effective depends greatly
on the circumstances of a community, its history, the
demographics of contributors and its need to remain
sustainable.

1) Protective:
1.1. This style is not aligned with the authentic values

of open source movement. This may create ten-
sion between the community and those who join
because they are driven by these values.

1.2. This clash of values and social norms may drive
away those with a genuine desire to learn, moti-
vated by the non-economical behavior like kinship,
enjoyment and giving.

2) Equitable
2.1. Motives such as cooperation, learning and enjoy-

ment are not compatible with a transactional and
rigid interactions.

2.2. This tension may frustrate contributors who want
a more supportive community.

3) Lenient:
3.1. Maintainers and mentors may feel or become

drained by the burden of mentoring.

5 LIMITATIONS & THREATS TO VALIDITY

Trustworthiness (Phase I and II)

We used a combination of directly emailing potential
participants, and announcements in the selected communities
forums and mailing lists. This method may have biased
our sample towards contributors who actively check
their respective communities forum and mailing lists
announcements. Especially, the Linux interviewees
were recruited through our contacts in the community
(convenience sampling). Convenience sampling is criticized
as potentially not representative of the targeted population.
However, both the qualitative and quantitative data from
other communities clearly indicates that there is a clear trend
towards protective behavior with Linux in the limit (Fig. 6b).

15

While we cannot be sure if the positioning of Linux is not
overdriven, the existence of the trend is unquestionable.

There is always a risk that the survey questions could
not be understood by the respondents. We mitigated this
risk by ensuring that the statement of our questions are
well elaborated and clearly stated. Self-determination is a
standard issue in interview studies and surveys. It is possible
that some participants answer the questions conveying their
intentions (self-interest when answering survey questions)
rather than what happens in reality. This is partly mitigated
by the sample size in the quantitative analysis, and using
comparative, rather than absolute analysis.

Internal and Construct Validity (Phase II)

Our survey measures subjective constructs. Although, we did
our best to write clear and comprehensive statements in the
survey, a risk of misalignment in understanding the questions
by researchers and respondents remains. To strengthen the
statistical conclusions we informed the Bayesian model of
the Likert scale with a joint prior for all communities (which
means that the interpretation of cut off points between
the scale answers is consistent across all communities).
The analysis scripts and anonymized quantitative data are
available for scrutiny at our GitHub repository.

In Bayesian data analysis, the choice of ROPE is domain
specific and is typically used to provide insights on the
robustness of the results. Larger the ROPE, more robust the
conclusion is. Following a common practice, we reported
the largest ROPEs for which the hypotheses hold to make
explicit the robustness of their validity. For H3, we opted for a
ROPE of (−0.2, 0.2). A ROPE of (−0.1, 0.1) is conventionally
accepted for effect size [49]—half of the size used here. For
H1, we consider a ROPE of size 0.8. This ROPE constitutes
16% of the Likert scale values (1− 5), which, we think, gives
sufficient robustness for the validity of this hypothesis.

External Validity (Phase II)

The findings of this study are confined to the selected
communities. Conscious of this potential limitation, we
selected 15 communities with different backgrounds and
attributes. The statistical analysis of N=387 subjects in
Phase II alleviates some concerns of the (naturally) small
qualitative sample of Phase I.

All respondents from the DuckDuckGo community were
contributors so they have not answered the maintainer
oriented questions v27–v33. Consequently, we excluded
DuckDuckGo from the statistical analysis. We thus cannot
make any quantitative statements about it. Out of the 387
participants 19 did not report the community they belong to.
Their responses were excluded as well.

Participation of maintainers from some communities
was low. This may affect the accuracy of the results of the
quantitative analysis. However, Bayesian data analysis is
known to provide the most accurate results given the data,
regardless of how small the data is [5]. The variance of the
inferred distributions gives an indication of the certainty of
the results. Furthermore, to reduce the impact of this issue,
our model uses shrinkage (e.g., [5, Sect. 9.3]) which means that
the responses of individual communities are informed by
the answers of the whole dataset of FOSS communities. This

feature increases the reliability of the results for communities
with lower response rates.

A complete agreement between the qualitative and
quantitative results is not always a possible outcome in
mixed-methods, especially when the subject of interest is
social and behavioral. Data obtained using different methods
is bound to show differences. We believe, a perfect agreement
of both methods would be even suspicious, given that
qualitative data is small, and participants were interviewed in
a particular context. In this study, the quantitative component
refines the qualitative results. The results of the survey shift
the conclusion from a rigid interpretation of the identified
governance styles, i.e. a taxonomy, to an archetypical styles
of governance that are approximated by the communities. A
FOSS community cannot be boxed into a single governance
style, which could have been an impression created by the
interviewees. The quantitative phase makes it clear that FOSS
communities (and their members) form a continuum and
an evolving social structure, where different forces coexist
together (Fig. 6). This text has also been added to Section 5.

6 RELATED WORK

Pull-request-based collaboration has attracted some attention
recently [2], [27], [30], [36], [50]–[56]. Still, to our best
knowledge, no prior work conceptualizes the different
governance styles across FOSS communities.

Soares and coauthors [30] find that the chance of a
merge is 32% lower for first time contributions, supporting
our findings that the protective and equitable styles of
governance are unfriendly to newcomers. In general, the
chance of acceptance for a PR is 17% higher when tests
are included, and 26.2% lower when many lines of code
are changed [24]. This is inline with our findings, that
passing tests and modularity of contributions are key criteria
applied in evaluating PRs. The study has also shown that
social distance and prior interaction with the maintainer
are key influencers on acceptance chances [24]. This is
consistent with our observation that social connections, trust,
relationship building and commitment to the community,
are considered in the PR evaluation processes.

Tsay et al. [29] note that maintainers were particularly
concerned with the appropriateness of the contribution’s
actual content and direction. Appropriateness in this study
is defined as fitting the product vision set by the community.
We concur that adhering to the product vision is one of the
evaluation criteria for PRs in the studied communities.

Marlow et al. [27] examine how interpersonal impres-
sions influence evaluations of contributions. The analysis
identified three scenarios where users sought out more
information about each other. These scenarios are discovery,
informing interaction, and skill assessment. Individuals form
impressions about specific areas of expertise so that they
can assess ways the coder can assist the project. They also
make judgments about personality. Arguments or rudeness
in posting often are seen as indicators of uncooperativeness
or arrogance [27]. Their study concurs and complements our
findings. It confirms that social inferences are part of the
PR evaluation process, while showing how GitHub social
signals are leveraged to make inferences about contributors.

16

In FOSS, proper evaluation is seen as more important than
addition of a feature. Developers prefer to postpone reviews
rather than rush through them [57]. We observed similar
attitude amongst our interviewees. They prefer investing
great care and attention to detail rather than following a pre-
defined checklist. This rigour coupled with the passion for
the project lead to excellence in the evaluation process [21].

Gousios et al. [1] asked “what factors affect the decision
and the time required to merge a pull request?” and “why
are some pull requests not merged?” In response to the first
research question, they found that the decision to merge is
influenced by whether the pull request modifies recently
modified code. The time required to merge is influenced by
the developer’s previous track record in contributing to the
project, the size of the project, and the test coverage of the
PR. The project’s openness to external contributions is also
important factor. In regards to unmerged PRs, they suggest
that contributions are rejected because of concurrent modi-
fications, the contributor not having identified the direction
of the project correctly, and the project’s process and quality
requirements not identified or adhered to. Although some of
these findings match our conclusions (mainly RQ2), the study
focuses solely on the “merge” decision, which is the result
end of the entire socially loaded process. In a broader and
more holistic manner, we examined the evaluation process
granularity and we unfolded some of its social and human
aspects. Gousios et al. [1] assert that only 13% of rejections
are related to technical reasons. However, it does not go
further and explore what are the non-technical reasons.

Gousios et al. [36] investigated several research questions;
but the most pertinent here is “what are the challenges of
contributing?” They suggest that the challenges to contribut-
ing, from the contributor’s perspective, are either related to
“social aspects” or “code aspects.” They cited that some of
the social aspects are “responsiveness”, “communication”
and “fear of rejection.” The “code aspects” are mainly
“understanding the code base”, the test suite is not always
available and meeting the code quality expectations. For
the social aspects, our work examines the collective actions
of the community, while Gousios et al. [36] work suggest
the individual social challenges faced by the contributors.
Collective actions refer to the actions taken by a community
as a group of people, acting based on a collective set of
believes, norms and decisions. Our work suggest that what
the community collectively does as a social system also
influence the decision-making of the PR evaluation process.

Gousios et al. [2] sought to investigate several research
questions. The most relevant question to our work states
“how do integrators decide whether to accept a contribution?”
This question relate to our RQ2. They identified a set of
factors which the integrator use to assess contributions.
They listed, code quality, documentation, roadmap fit and
simplicity amongst others. Our work build on these findings
and adds three additional principles, passing peer code
review, code maintainability and avoiding technical debt. In
addition, we show that these software engineering principles
are almost universal to all the communities we studies,
irrespective of their social conducts. The interplay with
the technical merits of the contribution is decoupled from
the collective group actions. The social collective actions
influence the interactions and how the individual is treated

but not necessary the technical merits of the contributions.
Dey and Mockus investigated the effect of the social

and technical factors on PRs quality in the npm community
[58]. They find that the technical and social factors are
equally significant in the PR evaluation in npm. Although,
the study does not add new technical factors compared
to previous work, e.g., [2], [24], [29], [36], [59], it accen-
tuates the importance of some social factors like “social
proximity” and commitment or loyalty to the community.
They also identify a collective behavior, the “leniency of a
repository”, which influences the PR acceptance [58]. This is
consistent with our conclusions that ‘social proximity”, i.e.,
how strongly a relation between the contribution’s author
and the maintainer and the reliability of the contributor are
important social determinants in the protective communities.
Our work provides further interpretation of the repository
level behavior discussed by Dey and Mockus, including
archetypical governance styles other than leniency.

The shorter version of this work [3], investigates the topic
using solely a qualitative method in five communities. It
identifies a community collective behavior taking place in
the evaluation process of pull requests, and formulates the
three governance styles. This extended version adds the quan-
titative survey of 15 communities, and carefully combines
the two analyses to achieve stronger and more informative
results that are both more broader empirically, and more
informative about a landscape of FOSS communities.

7 CONCLUSION

Governance of PRs evaluation process comprises of control
believes and assessment rules undertaken by the FOSS
communities we studied using a social system norms in
order to organize the contribution process.

FOSS communities align their pull request governance to
their needs and peculiarities. In some instances the PR gover-
nance evolves from one style to another, but it never compro-
mises quality. What shifts is the willingness of these commu-
nities to support the person contributing, possibly in a reac-
tion to a strategic need. For example, in the case of the Coala
community, this strategic need is to sustain participation. In
the Linux Kernel case, a strong influx of contributors com-
bined with a high complexity of the software seem to justify
prioritizing exclusivity measures like trust and relationship.

Regardless the style, this disciplinary aspect of FOSS
communities contributes to achieving quality by mitigating
the risks posed by the contributor and the contribution. Only,
the second level of risk mitigation focuses on the technical
quality of the PR. We hope that this extensive and nuanced
analysis of the mechanism of PR evaluation across various
FOSS communities can influence future projects on the
socio-technical aspects of open source software engineering,
decision making, community management, bias, and alike.
Clearly, not all communities are the alike, and the method
we used was effective in demonstrating that.

It remains an interesting question for future research,
what other aspects of FOSS communities (and how) correlate
or influence decision making in the PR process. These
dimensions can be organizational, e.g., leadership style, or
historical, e.g., well-established community versus a new
or emerging community. Another consideration for future

17

work is whether the technologies, the engineering practices
and tools used by FOSS communities, exert any influence on
sustaining a particular style of governance.

ACKNOWLEDGMENTS

Work supported by the EU’s Horizon 2020 Research and
Innovation program, grant No. 732287 ROSIN. We thank all
the interviewees and the survey respondents.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering. ACM,
2014.

[2] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: the contributor’s perspec-
tive,” in 38th International Conference on Software Engineering, 2016.

[3] A. Alami, M. L. Cohn, and A. Wąsowski, “How do FOSS communi-
ties decide to accept pull requests?” in Proceedings of the Evaluation
and Assessment in Software Engineering, 2020, pp. 220–229.

[4] J. W. Creswell and V. L. P. Clark, Designing and conducting mixed
methods research. Sage publications, 2017.

[5] J. Kruschke, Doing Bayesian Data Analysis. Elsevier, 2015.
[6] C. A. Furia, R. Feldt, and R. Torkar, “Bayesian data analysis in

empirical software engineering research,” IEEE Transactions on
Software Engineering, 2019.

[7] G. R. Gibbs, “Thematic coding and categorizing,” Analyzing
qualitative data, vol. 703, pp. 38–56, 2007.

[8] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering,” in 2011 International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2011.

[9] C. Robson and K. McCartan, Real world research. John Wiley &
Sons, 2016.

[10] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative data
analysis: A methods sourcebook. 3rd. Sage, 2014.

[11] B. Saunders, J. Sim, T. Kingstone, S. Baker, J. Waterfield, B. Bartlam,
H. Burroughs, and C. Jinks, “Saturation in qualitative research:
exploring its conceptualization and operationalization,” Quality &
quantity, vol. 52, no. 4, pp. 1893–1907, 2018.

[12] M. Q. Patton, Qualitative evaluation and research methods: Integrating
theory and practice. Sage Publications, 2014.

[13] D. D. Heckathorn, “Respondent-driven sampling: a new approach
to the study of hidden populations,” Social problems, vol. 44, no. 2,
pp. 174–199, 1997.

[14] P. Ghauri, K. Grønhaug, and R. Strange, Research methods in business
studies. Cambridge University Press, 2020.

[15] P. L. Alreck, P. L. Alreck, R. B. Settle, and S. Robert, The survey
research handbook. McGraw-Hill/Irwin, 1995.

[16] J. K. Kruschke and T. M. Liddell, “Bayesian data analysis for
newcomers,” Psychonomic bulletin & review, vol. 25, no. 1, 2018.

[17] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic pro-
gramming in python using PyMC3,” PeerJ Computer Science, vol. 2,
p. e55, 2016.

[18] D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond the
code itself: how programmers really look at pull requests,” in
Proceedings of the 41st International Conference on Software Engineering:
Software Engineering in Society. IEEE Press, 2019, pp. 51–60.

[19] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to
evaluate software system maintainability,” Computer, vol. 27, no. 8,
1994.

[20] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and
technical debt,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 50–60.

[21] A. Alami, M. L. Cohn, and A. Wąsowski, “Why does code
review work for open source software communities?” in The 41st
International Conference on Software Engineering, 2019.

[22] E. L. Paluck and L. Ball, “Social norms marketing to reduce gender
based violence,” IRC Policy Briefcase, 2010.

[23] M. Bevir, Governance: A very short introduction. OUP Oxford, 2012.
[24] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and

technical factors for evaluating contribution in github,” in The
36th International Conference on Software engineering. ACM, 2014.

[25] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki,
A. Wąsowski, and S. She, “Variability mechanisms in software
ecosystems,” Information and Software Techn., vol. 56, no. 11, 2014.

[26] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding
in github: transparency and collaboration in an open software
repository,” in Proceedings of the ACM 2012 conference on computer
supported cooperative work. ACM, 2012, pp. 1277–1286.

[27] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in
online peer production: activity traces and personal profiles in
github,” in Proceedings of the 2013 conference on Computer supported
cooperative work. ACM, 2013, pp. 117–128.

[28] P. B. De Laat, “How can contributors to open-source communities
be trusted? on the assumption, inference, and substitution of trust,”
Ethics and information technology, vol. 12, no. 4, pp. 327–341, 2010.

[29] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in github,” in Proceedings of
the 22nd ACM SIGSOFT international symposium on foundations of
software engineering. ACM, 2014, pp. 144–154.

[30] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino,
“Acceptance factors of pull requests in open-source projects,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing.
ACM, 2015, pp. 1541–1546.

[31] Z. Li, Y. Yu, T. Wang, G. Yin, S. Li, and H. Wang, “Are you still
working on this an empirical study on pull request abandonment,”
IEEE Transactions on Software Engineering, 2021.

[32] Z. Li, Y. Yu, M. Zhou, T. Wang, G. Yin, L. Lan, and H. Wang,
“Redundancy, context, and preference: An empirical study of
duplicate pull requests in oss projects,” IEEE Transactions on Software
Engineering, 2020.

[33] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in The 18th ACM conference on Computer
supported cooperative work & social computing. ACM, 2015.

[34] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost
there: A study on quasi-contributors in open-source software
projects,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018, pp. 256–266.

[35] N. Ducheneaut, “Socialization in an open source software commu-
nity: A socio-technical analysis,” Computer Supported Cooperative
Work (CSCW), vol. 14, no. 4, pp. 323–368, 2005.

[36] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen,
“Work practices and challenges in pull-based development: the
integrator’s perspective,” in The 37th International Conference on
Software Engineering-Volume 1, 2015.

[37] S. E. Sim and R. C. Holt, “The ramp-up problem in software projects:
A case study of how software immigrants naturalize,” in The 20th
International Conference on Software Engineering, 1998.

[38] S. Gavrilets and P. J. Richerson, “Collective action and the evolution
of social norm internalization,” Proceedings of the National Academy
of Sciences, vol. 114, no. 23, pp. 6068–6073, 2017.

[39] S. Albert and D. A. Whetten, “Organizational identity.” Research in
organizational behavior, 1985.

[40] J. Bitzer, W. Schrettl, and P. J. H. Schröder, “Intrinsic motivation
in open source software development,” Journal of Comparative
Economics, vol. 35, no. 1, 2007.

[41] S. O. Alexander Hars, “Working for free? motivations for partic-
ipating in open-source projects,” International journal of electronic
commerce, vol. 6, no. 3, pp. 25–39, 2002.

[42] K. R. Lakhani and R. G. Wolf, “Why hackers do what they do:
Understanding motivation and effort in free/open source software
projects,” Open Source Software Projects (September 2003), 2003.

[43] G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots
and rainbows: motivation and social practice in open source
software development.” MIS quarterly, vol. 36, no. 2, 2012.

[44] M. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles, C. Treude,
I. Steinmacher, and A. Sarma, “The shifting sands of motivation:
Revisiting what drives contributors in open source,” in ICSE’21,
2021.

[45] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software
developers in Open Source projects: an Internet-based survey of
contributors to the Linux kernel,” Research policy, vol. 32, no. 7,
2003.

[46] K. Stewart and S. Gosain, “The impact of ideology on effectiveness
in open source software development teams,” Mis Quarterly, 2006.

[47] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu,
“Going farther together: The impact of social capital on sustained

18

participation in open source,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019.

[48] P. S. Adler and S.-W. Kwon, “Social capital: Prospects for a new
concept,” Academy of management review, vol. 27, no. 1, pp. 17–40,
2002.

[49] J. K. Kruschke, “Rejecting or accepting parameter values in
bayesian estimation,” Advances in Methods and Practices in Psy-
chological Science, vol. 1, no. 2, pp. 270–280, 2018.

[50] J. Zhu, M. Zhou, and A. Mockus, “Effectiveness of code contribu-
tion: From patch-based to pull-request-based tools,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. ACM, 2016, pp. 871–882.

[51] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: determinants of pull request evaluation latency on github,” in
The 12th Working Conference on Mining Software Repositories, 2015.

[52] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Who should review
this pull-request: Reviewer recommendation to expedite crowd
collaboration,” in 21st Asia-Pacific Software Engineering Conf., 2014.

[53] M. M. Rahman and C. K. Roy, “An insight into the pull requests
of github,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 364–367.

[54] J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang, “Who should
comment on this pull request? analyzing attributes for more
accurate commenter recommendation in pull-based development,”
Information and Software Technology, vol. 84, pp. 48–62, 2017.

[55] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation
for pull-requests in github: What can we learn from code review
and bug assignment?” Information and Software Techn., vol. 74, 2016.

[56] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino,
“Rejection factors of pull requests filed by core team developers in
software projects with high acceptance rates,” in 14th International
Conference on Machine Learning and Applications, 2015.

[57] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in 2011 33rd International
Conference on Software Engineering (ICSE). IEEE, 2011, pp. 541–550.

[58] T. Dey and A. Mockus, “Effect of technical and social factors on pull
request quality for the npm ecosystem,” in Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2020, pp. 1–11.

[59] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 international working conference on Mining
software repositories, 2008, pp. 67–76.

Adam Alami is a postdoctoral researcher with the IT
University of Copenhagen, Denmark. He has broad experi-
ence in information technology practices. His career began
in software development, before progressing to include
business analysis and project management. Involvement
in major IT transformation projects has for twenty years
been the mainstay of his work. His chosen fields of
research fit within the broad topic of cooperative, social,
and human aspects of software engineering. In striving to
better understand how software development teams might
achieve the quality of their output, he dissects process and

ceremony to identify behaviors, norms, and traditions that are fundamental to their
quest for quality. He holds a PhD degree in Computer Science from the IT University
of Copenhagen, Denmark (2020), a Master degree on Computer Science from the
University of Technology (UTS) (2006), Sydney, and a Bachelor degree in Software
Engineering from the Université du Québec à Montréal (UQÀM) (1998),

Raúl Pardo a Postdoctoral researcher at the IT University
of Copenhagen. His research is focused on developing
rigorous techniques to design, analyze and build software
to protect online privacy. His interests lie at the intersection
of formal methods, online privacy and computer security.
He has done research on privacy for social networks, Inter-
net of Things (IoT) and data analytics. Within these topics,
he is working on privacy risk analysis, formal verification
of privacy legal requirements, probabilistic programming,
and Bayesian data analysis. He holds a PhD degree from
Chalmers University of Technology.

Marisa Leavitt Cohn is an Associate Professor in the Busi-
ness IT Department at the IT University of Copenhagen.
She is member of the Technologies in Practice Research
group and co-director of the ETHOS laboratory, a femi-
nist methods lab fostering critical approaches to digital
methods. Cohn combines approaches from Anthropology,
Science and Technology Studies, and Human Computer
Interaction to the study of infrastructure and software. Her
work examines the temporalities of technological change
in long-lived software systems, looking at issues related
to legacy, maintenance, and obsolescence. Cohn holds a

PhD in Information and Computer Sciences from the University of California Irvine De-
partment of Informatics (2013) and a BA in Anthropology from Barnard College (2002).

Andrzej Wąsowski is Professor of Software Engineering
at the IT University of Copenhagen. He has also worked at
Aalborg University in Denmark, and as visiting professor
at INRIA Rennes and University of Waterloo, Ontario.
His interests are in software quality, reliability, and safety
in high-stake high-value software projects. This includes
semantic foundations and tool support for model-driven
development, program analysis tools, testing tools and
methods, as well as processes for improving and maintain
quality in software projects. Many of his projects involve
commercial or open-source partners, primarily in the do-

main of robotics and safety-critical embedded systems. Recently he coordinates the
Marie-Curie training network on Reliable AI for Marine Robotics (REMARO). Wąsowski
holds a PhD degree from the IT University of Copenhagen, Denmark (2005) and a
MSC Eng degree from the Warsaw University of Technology, Poland (2000).

19

APPENDIX

TABLE 9: Survey questions relevant to RQ1 (governance styles) and RQ2 (social norms and software engineering principles).
Each criterion had a 5-point Likert scale: i) strongly agree, agree, neutral, disagree and strongly disagree for governance
styles; and ii) very important, important, neutral, not important, not important at all for software engineering principles and
social norms. Governance style questions were only answered by maintainers. Software engineering principles and social
norms questions were answered by maintainers and contributors.

ID Question Rationale for inclusion

G
ov

er
na

nc
e

St
yl

es

v27 In general I say no to most pull requests (PR)/patches. The
contributor has to be persistent and prove that the PR/patch
worth evaluating.

This question was included to test the widespread of the inclusivity
behavior we observed in the protective style, which is unique to the Linux
Kernel community. Inclusivity is a code that emerged in the qualitative
analysis and belongs to the Protective Governance style theme.

v28 I don’t consider a pull request/patch, unless I trust the
contributor.

Trust emerged as a code under the Protective Style theme. This question
was included to measure the presence of this behavior within the
protective communities.

v29 I don’t consider a pull request/patch, unless the contributor is
reliable.

Reliability is another code characteristic of the protective style. This code
emerged in our qualitative data analysis, we included this question
to evaluate the widespread of this behavior within the protective
communities.

v30 I don’t consider a pull request/patch, unless I have a strong
relationship with the contributor.

The maintainer-contributor relationship is another qualitative data related
code. This question represent this code and intended to test its relevance
in the protective communities.

v31 I assess every pull request/patch in the same manner irrespec-
tive of the contributor.

This question is to evaluate the claim of “fair conduct towards Each
other’s”, which we observed in our coding of the interviews of the
equitable communities.

v32 I assess pull requests/patches purely on technical grounds. Technically grounded decision is another code under the equitable
governance style theme. This question is to evaluate its presence in
the equitable communities.

v33 I never say no to a pull request/patch. If the quality of the
PR/patch is not mergeable, then I mentor the contributor to
elevate his/her PR/patch to a mergeable state.

Helping each other’s and avoiding rejection are two codes characteristic
of the Lenient style. This question evaluate these two codes.

So
ft

w
ar

e
En

gi
ne

er
in

g
Pr

in
ci

pl
es

v47 Code Quality (my subjective assessment of quality as a
reviewer)

This is an evaluation of the adherence to the software engineering
criteria we identified in our qualitative analysis. It measures the
importance of these evaluation principles to the PR reviewer among our
survey participants.

v48 Code modularity

v49 Maintainability (the ease with which a program code can be
changed in order to: correct defects or enhance the code)

v50 Comply with the community best practices of programming
languages

v51 Contain documentation

v52 Avoid technical debt

v53 Pass tests

So
ci

al
no

rm
s

v54 Trust is more important than the contribution of the PR/patch
during the assessment of PRs/patches.

These social norms were identified in our qualitative analysis. This
question evaluate the importance of these norms to the participants in
our survey.

v55 Past reliability of the contributor is more important than
the contribution of the PR/patch during the assessment of
PRs/patches.

v56 A good contributor/maintainer relationship is more important
than the contribution of the PR/patch during the assessment
of PRs/patches.

	Introduction
	Methods
	Phase I: Qualitative Exploration and Understanding
	Phase II: Quantitative Survey

	Findings
	RQ1: Decision Making in PR Evaluation
	RQ2.1: Software Engineering Principles in Evaluating PRs
	RQ2.2: Social Norms in Evaluation of Pull Requests
	RQ2.3: Product Vision in Evaluation of Pull Requests
	Governance Styles, Engineering Principles, and Social Norms

	Discussion
	Protective
	Equitable
	Lenient
	Implications

	Limitations & Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Adam Alami
	Raúl Pardo
	Marisa Leavitt Cohn
	Andrzej Wąsowski

	Appendix

