
Specification of Evolving Privacy Policies for
Online Social Networks

Raúl Pardo∗, Ivana Kellyérová∗, César Sánchez† and Gerardo Schneider∗
∗Dept. of Computer Science and Engineering, Chalmers | University of Gothenburg, Sweden.

Email: pardo@chalmers.se, guskeliv@student.gu.se, gersch@chalmers.se
†IMDEA Software Institute, Madrid, Spain.

Email: cesar.sanchez@imdea.org

Abstract—Online Social Networks are ubiquitous, bringing
not only numerous new possibilities but also big threats and
challenges. Privacy is one of them. Most social networks today
offer a limited set of (static) privacy settings, not being able
to express dynamic policies. For instance, users might decide to
protect their location during the night, or share information with
difference audiences depending on their current position. In this
paper we introduce T FPPF , a formal framework to express,
and reason about, dynamic (and recurrent) privacy policies that
are activated or deactivated by context (events) or time. Besides
a formal policy language (T PPL), the framework includes a
knowledge-based logic extended with (linear) temporal operators
and a learning modality (T KBL). Policies, and formulae in
the logic, are interpreted over (timed) traces representing the
evolution of the social network. We prove that checking privacy
policy conformance, and the model-checking problem for T KBL,
are both decidable.

I. INTRODUCTION

Online Social Networks, also known as Social Networking
Sites or Social Network Services, have exploded in popularity
in the last years. Over the past decade, the use of Facebook [5]
and Twitter [17], just to mention two of the most popular ones,
has increased at the point of becoming ubiquitous. Nearly 70%
of the Internet users are active on social networks as shown by
a recent survey [11], and this number is increasing. A number
of studies show that the number of privacy breaches is keeping
pace with this growth [13], [10], [12], [14]. Very often users’
requirements are far from the privacy guarantees offered by
social networks which do not meet their expectations. The
reasons for that are multifold, ranging from the users’ lack
of knowledge on the underlying technology to fundamental
technical issues of the technology itself.

We are here only concerned with the fact that the privacy
settings currently available in social networks are not suitable
for capturing the dynamic aspect of privacy policies. That is,
privacy policies should take into account that the networks
evolve, as well as the privacy preferences of the users. The
privacy policy may “evolve” due to explicit changes done
by the users (e.g., a user may change the audience of an
intended post to make it more restrictive), or because the
privacy policy is dynamic per se. Examples of the latter, are for
instance: “My boss cannot know my location between 20:00-
23:59 every day”, or “Only my friends can see the pictures I
am tagged in from Fridays at 20:00 till Mondays at 08:00”.
These are recurrent policies triggered by some time events

(“every day between 20:00 and 23:59”, and “every week from
Friday at 20:00 till Monday at 08:00”). Other policies may be
activated or deactivated by certain events: “Only up to 3 posts,
disclosing my location, are allowed per day in my timeline”.

In this paper we present a formal framework to express
evolving privacy policies. We take FPPF [16] as a point of
departure. FPPF is a formal framework for privacy policies
which consists of: i) A generic social network model (SNM);
ii) A knowledge-based logic (KBL) to reason about the social
network and privacy policies; iii) A formal language (PPL)
to describe privacy policies (based on the previous logic).
FPPF is a an expressive privacy policy framework able to
represent all privacy policies for social networks like Facebook
and Twitter, and beyond [16]. Though rich in what concerns
its expressiveness, FPPF is not suitable to express evolving
privacy policies, in the sense discussed above. In summary,
our contributions in this paper are:

i) We introduce T FPPF , an extension of FPPF able
to represent recurrent privacy policies parametrised with
timed intervals. For that we syntactically extend the
privacy policy language PPL with timed intervals and
recurrent behaviour (timed PPL), and the underlying
epistemic logic KBL with temporal operators (box and
diamond) and a learn operator (temporal KBL). Policies
in PPL, and formulae in KBL, are interpreted over
(finite) timed traces.

ii) We study properties of both the new privacy policy
language and the underlying logic, in particular showing
that the new operator learn cannot be derived. We prove
decidability of the satisfaction relation for the logic, and
of the conformance relation for the policy language.

The paper is structured as follows, Section II introduces
all the elements of the new privacy policy framework. More
precisely, in Section II-A we introduce temporal KBL; in
Section II-B we describe timed SNMs, we define a satisfaction
relation for formulae of the previous logic, we show that the
model-checking problem is decidable, and study the properties
of the new learning modality; in Section II-C we present the
privacy policy language timed PPL, we define what means
for a privacy policy to be in conformance to a timed SNM and
show that this procedure is decidable. In Section III we analyse
the complexity of the KBL model checking problem, and we
provide an alternative optimised model checking algorithm.

All the proofs are in the appendix with the exception of
Theorem 1 which is presented in Section III.

II. TIMED FPPF
In this section, we introduce the extension of FPPF with

time, which contains the following elements:
a) A knowledge-based logic T KBL with additional temporal

modalities, inspired by temporal logics such as LTL.
b) A social network model (as defined for FPPF), together

with the notion of traces, i.e., sequences of these models
that capture the evolution of a social network which we
use to give semantics to the previous logic. We use SN to
denote the universe of all possible social network models.

c) A privacy policy language (T PPL), enabling the user to
define a (possibly recurring) time window in which their
policy should be enforced.

Together, these parts form the new Timed First-Order Privacy
Policy Framework, T FPPF . In the following sections, we
describe each of the components separately.

A. Temporal KBL
T KBL is a temporal knowledge-based logic for social

networks. It contains the knowledge modality present in all
epistemic logics [7] and the temporal modalities box and
diamond. Additionally, it includes: i) Two special types of
predicates, connection and action predicates. Connection pred-
icates represent the “social” connections between users. For
instance, friends, colleagues, family, co-workers, and so forth.
On the other hand, action predicates model the actions which
are permitted to be executed by a user. For example, Alice can
send a friend request to Bob or Alice can join events created by
Bob. We use C and Σ to denote the set of connection and action
predicates, respectively; ii) A modality to represent learning.
It will allow us to differentiate between the moment some
piece of information has been learnt or whether it is known.
We study the relation between the learning and knowledge
modalities in the following section.

Let T be a set (which will refer as vocabulary) which
consists of predicate symbols (p), function symbols (f) and
constant symbols (c). Predicate and function symbols have
some implicit arity which corresponds to the number of
arguments they take. We assume an infinite supply of variables,
which we write as x, y and so on. We can form terms using
the elements of T as follows: s ::= c | x | fi(#»s) where #»s is
a tuple of terms respecting the arity of fi. Let Ag be a finite
set of agents. The syntax of T KBL is defined as follows.

Definition 1 (Syntax of T KBL). Given agents i, j ∈ Ag ,
a nonempty set of agents G ⊆ Ag , the predicate symbols
an(i, j), cm(i, j), p(#»s) where m ∈ C and n ∈ Σ, and a
variable x. The syntax of the timed knowledge-based logic
T KBL is inductively defined as:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | 2ϕ | 3ϕ | ξ
ξ ::= ψ | Liψ
ψ ::= ρ | ψ ∧ ψ | ¬ψ | ∀x.ψ | Kiψ | DGψ
ρ ::= cm(i, j) | an(i, j) | p(#»s)

The remaining epistemic modalities are defined as follows:
SGϕ ,

∨
i∈GKiϕ; EGϕ ,

∧
i∈GKiϕ; SLGϕ ,

∨
i∈G Liϕ;

ELGϕ ,
∧
i∈G Liϕ.

Note that in the version of the logic presented here Li
cannot appear within the scope of a Kj operator. We use
FT KBL to denote the set of all well-formed formulae of
T KBL according to category ϕ. Formulae in ψ, repre-
sent the KBL logic [15]; FKBL denote the set of well-
formed KBL formulae.1 The epistemic modalities stand for:
Kiϕ, agent i knows ϕ; Liϕ, agent i learnt ϕ; SGϕ, someone in
the group G knows ϕ; EGϕ, everyone in the group G knows
ϕ; SLGϕ, someone in the group G learnt ϕ; ELGϕ, everyone
in the group G learnt ϕ; DGϕ, ϕ is distributed knowledge
in the group G. We use the following operators as syntactic
sugar for permission: P ji an := an(i, j), agent i is permitted
to execute action an to agent j; SP jGan :=

∨
i∈G an(i, j), at

least one agent in G is permitted to execute action a to agent
j; GP jGan :=

∧
i∈G an(i, j), all agents in G are permitted

to execute action a to agent j. When we write “agent i is
permitted to execute action an to agent j”, it means that agent
i is allowing j to perform an action an which directly involves
i, e.g. PAlice

Bob friendRequest would mean that Bob is allowed
to send a friend request to Alice.

B. Semantics of T KBL

T KBL formulae will be interpreted over traces of social
network models. These models are defined as social graphs [4]
with agents, their knowledge bases and privacy policies, and
a first-order relational structure.

Definition 2 (Social Network Model [15]). Given a set of
privacy policies Π, and a finite set of agents Ag ⊆ AU from
a universe AU; a social network model (SNM) is a social
graph of the form 〈Ag,A,KB , π〉, where

• Ag is a nonempty finite set of nodes representing the
agents of the social network;

• A is a first-order relational structure over the SNM,
consisting of a set of predicate symbols, function symbols
and constant symbols interpreted over a domain from a
set {Do}o∈D, where D is a set of indexes for domains;

• KB : Ag → 2FKBL is a function returning the set of
accumulated knowledge for each agent, stored in what
we call the knowledge base of the agent. We write KB i

to denote KB(i);
• π : Ag → 2Π is a function returning the set of privacy

policies of each agent. We write πi for π(i).

The knowledge base KB i of each agent i contains the
explicit knowledge that the agent has. Agents not only posses
this explicit knowledge, but also anything that can be derived
using the S5 axiomatisation of epistemic logic [7] from the
explicitly formulae in their knowledge bases.

1For simplicity of presentation we leave out the common knowledge
operator from the logic. Though rather technical its treatment would only
need the machinery from standard epistemic logic.

post(Bob, 1)
∀η.(post(Bob, η) =⇒ loc(Bob, η))

Alice

∀x.(bYear(x) ∧ bMonth(x) ∧ bDay(x) =⇒ age(x))
loc(Bob, 1) bMonth(Alice) bDay(Alice)

Bob

loc(Bob, 1)
bYear(Alice)

Charlie

Friendship

Blocked

friendRequest

Fig. 1. Example of Social Network Model

Definition 3. A derivation of a formula ϕ ∈ FKBL, is
a finite sequence of formulae ϕ1, ϕ2, . . . , ϕn = ϕ where
each ϕi, for 1 ≤ i ≤ n, is either an instance of the
axioms or the conclusion of one of the derivation rules of the
S5 axiomatisation which premises have already been derived,
i.e., it appears as ϕj with j < i.

Given a set of formulae Γ ∈ 2FKBL , we write Γ ` ϕ to
denote that ϕ can be derived from Γ.

Example 1. Let SN be an SNM consisting of three agents Al-
ice, Bob and Charlie, Ag = {Alice,Bob,Charlie}; the friend
request action, Σ = {friendRequest}; and the connections
Friendship and Blocked, C = {Friendship,Blocked}.

Fig. 1 shows a graphical representation of SN . In this
model the dashed arrows represent connections. Note that the
Friendship connection is bidirectional, i.e., Alice is friend with
Bob and vice versa. On the other hand, it is also possible to
represent unidirectional connections, as Blocked: in SN Bob
has blocked Charlie. Permissions are represented using a
dotted arrow. In this example, Charlie is able to send a friend
request to Alice.

The predicates inside each node represent the agents’
knowledge. Charlie and Bob have the predicate loc(Bob, 1)
inside the node, meaning that both know location number 1
of Bob. Besides predicates, agents’ nodes may also contain
KBL formulae that may increase the knowledge of the agents.
For instance, Alice knows loc(Bob, 1) implicitly. The rule
Modus Ponens can be applied to ∀η.post(Bob, η) =⇒
loc(Bob, η) (included in Alice’s knowledge base). This formula
states that if Alice has access to a post of Bob, she can infer
his location. Alice has access to post(Bob, 1), therefore she
can infer loc(Bob, 1).

We use traces to capture the evolution of a social network.
A trace is a sequence of pairs consisting of an SNM together
with a timestamp. A timestamp t is a natural number repre-
senting the number of milliseconds elapsed since January 1,
1900, 00:00:00.000. We could have chosen a large number
of equally good starting points; there is no specific reason
for choosing 1900. We will use T to denote the set of

timestamps. We will also use a more human-readable format of
YYYY-MM-DD hh:mm:ss.sss for individual timestamps,
optionally skipping the time part – then we assume it defaults
to 00:00:00.000. Based on this, 2016-03-26 10:59:08.234 or
2000-01-01 (which represents 2000-01-01 00:00:00.000) or
1950-12-10 15:35:00.474 are all valid timestamps.

The intuitive meaning of a trace is that each SNM is a
snapshot of the social network at point t, as if we froze the
network, along with the knowledge and relationships between
its agents, at that moment. In addition, we also demand the
trace to be finite.

Definition 4 (Trace). A trace σ is a finite sequence σ =
〈(SN 0, t0), (SN 1, t1), . . . , (SN k, tk)〉 such that, for all 0 ≤
i ≤ k, SN i ∈ SN and ti ∈ T.

The (untimed) evolution of a social network was formalised
in [15] using a transition relation SN

e−→ SN ′ where SN and
SN ’ are SNMs and e is an event from a set EVT (the set of all
the events that can be executed in the social network). Here
we extend this transition relation with timestamps, formally
→⊆ SN ×EVT ×T×SN . The details of how the elements
of the SNM are changed because of the execution of the
event are formally described in [15], but they are not relevant
for the purpose of this paper. In order to explicitly define
which event led to a given SNM in a trace, we sometimes
write SN 0

e,t1−−→ SN 1 to denote 〈(SN 0, t0), (SN 1, t1)〉 where
SN 0,SN 1 ∈ SN , e ∈ EVT and t0, t1 ∈ T.

We also introduce the notion of well-formed trace, as being
a trace satisfying the following two conditions. First, times-
tamps are strictly ordered from smallest to largest. Second, the
transition from (SN n, tn) to (SN n+1, tn+1) occurs due to the
execution of an event e ∈ EVT at time tn+1.

Definition 5 (Well-formed traces). Let σ =
〈(SN 0, t0), (SN 1, t1), . . . , (SN k, tk)〉 be a trace. σ is
well-formed if the following two conditions hold:

i) Let n ∈ N. Then for any i, j such that 0 ≤ i, j ≤ n and
i < j, it is the case that ti < tj .

ii) Let n ∈ N. For all (SN n, tn), (SN n+1, tn+1) ∈ σ, it is
the case that SN n

e,tn+1−−−−→ SN n+1 where e ∈ EVT .

We use WFT to denote the set of all well-formed traces.
To make it easier to reason about the attributes of the whole
trace, based on the attributes of individual networks, we use
the following shortcuts to refer to the SNMs in a trace: σ[t]
denotes the SNM SN such that (SN , t) ∈ σ; given t1, t2 ∈ T
such that t1 ≤ t2, σ[t1..t2] represents the well-formed subtrace
of σ starting with the smallest t ≥ t1 such that (SN , t) ∈ σ,
and ending with the largest t ≤ t2 such that (SN , t) ∈ σ.

Often we need to refer to the components of a specific
SNM in a trace. For that purpose we use a superscript in
the components of SNMs to indicate the SNM of the trace
to which the element belongs. For example, given σ and t,
Agσ[t] stands for the set of agents in σ[t], Dσ[t]

o for a domain
in Aσ[t] and KB

σ[t]
i for i’s knowledge base in σ[t].

Furthermore, let Agσ contain all agents present in the
trace, Agσ =

⋃
(SN ,t)∈σ Ag

SN , and Tσ denote the set of all
timestamps associated with SNMs in the trace σ: Tσ = {t |
(SN , t) ∈ σ}.

Example 2. Consider a social network with the event checkin ,
which discloses the location of users to all their friends,
and the event opennewsfeed which retrieves all the posts,
pictures, locations, etc., that a user has access to. Let σ =
〈(SN , 0), (SN ′, 1), (SN ′′, 2)〉 be the following well-formed

trace SN
checkin(Alice),1−−−−−−−−−−→ SN ′

opennewsfeed(Bob),2−−−−−−−−−−−−−→ SN ′′. See
Fig. 2 for a graphical representation of σ.

It consists of the agents Alice and Bob, Agσ =
{Alice,Bob}, but new agents could be added by executing
a sign up event. In this trace there are 3 timestamps, Tσ =
{0, 1, 2}. In the initial SNM, SN or σ[0], Alice and Bob
are friends, (Alice,Bob) ∈ C

σ[0]
Friendship . On the other hand,

there is no knowledge neither in Alice’s nor Bob’s knowledge
bases. At time 1 Alice discloses her location by performing
a checkin event. Of course, she knows the location she just
shared KB

σ[1]
Alice ` loc(Alice, 1) (we use 1 as resource id to the

location of Alice after she executes the checkin). Bob, however,
did not check his newsfeed until time 2. Because of this it is at
time 2 when he acquires the knowledge about Alice’s location,
i.e., KB

σ[1]
Bob�̀loc(Alice, 1) and KB

σ[2]
Bob ` loc(Alice, 1).

In what follows we define what means for a formula to be
satisfied in a trace.

Definition 6 (Satisfaction). Given a well-formed trace σ ∈
WFT , agents i, j ∈ Agσ , a finite set of agents G ⊆ Agσ ,
formulae ϕ,ψ ∈ FT KBL, m ∈ C, n ∈ Σ, o ∈ D, and t, t′ ∈
Tσ , the satisfaction relation |= is defined as shown in Table I.

We use a special agent called environment (or simply e)
which defines the truth of predicates of the type p(#»s). The
environment’s knowledge base (KBe) contains all predicates
which are true in the real world, e.g. location(Alice) =
“Sweden ′′. In Table I, Cm ⊆ Ag × Ag and An ⊆ Ag × Ag
are binary relations used to interpret connection and actions
predicates, respectively. We define Ek+1

G ϕ as EGEkGϕ, where

σ, t |= 2ϕ iff for all t′ ∈ Tσ , t′ ≥ t, σ, t′ |= ϕ
σ, t |= 3ϕ iff there exists t′ ∈ Tσ , t′ ≥ t, such that σ, t′ |= ϕ
σ, t |= ¬ϕ iff σ, t �|= ϕ
σ, t |= ϕ ∧ ψ iff σ, t |= ϕ and σ, t |= ψ

σ, t |= ∀x.ϕ iff for all v ∈ D
σ[t]
o , σ, t |= ϕ[v/x]

σ, t |= cm(i, j) iff (i, j) ∈ Cσ[t]m

σ, t |= an(i, j) iff (i, j) ∈ Aσ[t]n

σ, t |= p(#»s) iff KB
σ[t]
e ` p(#»s)

σ, t |= Kiϕ iff KB
σ[t]
i ` ϕ

σ, t |= Liϕ iff σ, t |= Kiϕ and �∃t′ < t such that σ, t′ |= Kiϕ

σ, t |= DGϕ iff (
⋃
i∈GKB

σ[t]
i) ` ϕ

TABLE I
SATISFACTION RELATION FOR T KBL

E0
Gϕ is equal to ϕ. We use ϕ[v/x] to denote the usual capture-

free substitution in first-order logic. For simplicity, we tacitly
assume that each variable v is mapped to its own domain.

In their knowledge bases agents store all the information
they get access to. At a given moment in time, the knowledge
base of an agent contains all the information the agent have
seen so far. Agents do not forget any piece of information since
events updating knowledge can only add new formulae, but
never remove them. This was formally defined in [15] where
we describe the operational semantics rules which capture the
evolution of SNMs. Formally, for any σ and t ≥ 1 it always
holds that

KB
σ[t]
i = KB

σ[t−1]
i ∪ Φ (1)

where Φ ∈ 2FKBL is a set of formulae representing the new
knowledge that i learnt at time t. Given the above, it is easy
to show that the latest knowledge base will always have the
union of all the formulae that the agent had access to during
the execution of the trace. Hence the following trivially follows
from (1): ⋃

t′≤t

KB
σ[t′]
i = KB

σ[t]
i .

Therefore in order to check whether some piece of infor-
mation is derivable from the knowledge base at some time t it
suffices to check derivability from KB

σ[t]
i . On the other hand,

learning is new knowledge (i.e., it was not known before)
that is acquired at a given moment in time. As shown in
Table I, the difference with knowledge is that for learning
we require that the new information cannot be derived in
any knowledge base of the trace from a time previous to the
one in which the formula is being evaluated. For instance,
if Alice posts her location at time 3 and Bob is part of the
audience of this post, then Bob has learnt Alice’s location
at time 3, formally σ, 3 |= LBob loc(Alice). Moreover, it
holds that Bob knows Alice’s location for any timestamp
greater than 3 or σ, t |= KBob loc(Alice) for t ≥ 3. Note
that at time 3 Bob learnt Alice’s location, but also knows it,
σ, 3 |= LBob loc(Alice) ∧KBob loc(Alice).

It always holds that if the agents learn something, then they
know it. We call this the learning axiom:

L. Liϕ =⇒ Kiϕ.

Alice

Bob

SN

loc(Alice, 1)Alice

Bob

SN ′

loc(Alice, 1)Alice

loc(Alice, 1)Bob

SN ′′

Friendship Friendship Friendship

checkin(Alice), 1 opennewsfeed(Bob), 2

Fig. 2. Example of a Trace of SNMs

Lemma 1. The learning axiom is sound with respect to traces
of SNMs.

It is easy to show that knowing does not imply learning in
general. For instance, if KB

σ[t′]
i ` ϕ for some t′ < t then we

have that σ, t |= Kiϕ holds but σ, t |= Liϕ does not hold.
Another assumption in our models is that of perfect recall.

When agents in the system learn something, they know it
forever. The perfect recall axiom is formally defined as

PF. Kiϕ =⇒ 2Kiϕ.

Lemma 2. The perfect recall axiom is sound with respect to
traces of SNMs.

Example 3. Let σ be the trace introduced in Example 2. Now
we can check whether Bob learns Alice’s location after she
performs the checkin action:

σ, 0 |= 2(friend(Alice,Bob) ∧ checkin(Alice) =⇒
∃x.3LBob loc(Alice, x))

(2)

The 2 operator requires that the implication over it applies
for all t ∈ Tσ such that t ≥ 0, which in this example are
0, 1 and 2. The 3 operator represents that whenever the
premise holds, there will be a time in the future where Bob will
learn a location of Alice. In order to determine whether it is
satisfied over σ, we look at all the elements of the formula. The
first conjunct of the premise, friend(Alice,Bob), is already
satisfied in SN and it remains true for all the trace, i.e.,
(Alice,Bob) ∈ A

σ[t]
Friendship for t ≥ 0. checkin(Alice) is a

predicate representing that Alice executed the event checkin.
As mentioned, this general purpose predicates are check in the
environment’s knowledge base. It first becomes true in SN ’,
i.e., checkin(Alice) ∈ KBσ[t]

e for t ≥ 1. SN” is the resulting
SNM after Bob opens his newsfeed. At this moment he learns
Alice’s location, i.e., KB

σ[2]
Bob ` loc(Alice, 1). Therefore, since

the premise holds at time 1 and at time 2 Bob learns the
location we conclude that (2) holds.

Even though the formula of the previous example hold in
σ, it does not guarantee that the location learnt by Bob is the
one disclosed during Alice’s checkin. This is because the ex-
istential quantification ranges over all the location identifiers.

Nevertheless, (2) stated that a location has been learnt, and
indeed, it happened.

The model-checking problem for KBL formulae in SNMs
is decidable [15]. The addition of the new modalities preserves
this property for the new T KBL.

Theorem 1 (Model-checking). Determining whether a for-
mula ϕ ∈ FT KBL is satisfied in a trace σ ∈ WFT at a given
timestamp t ∈ Tσ , that is checking σ, t |= ϕ, is decidable.

A proof of the theorem and analysis of its complexity is
presented in Section III.

C. Timed PPL
We would like to equip the users of a social network

with additional power in defining their privacy policies. This
is done by extending the original privacy policy language
PPL with time fields, which enable the user to specify a
possibly recurring time window frame in which their policy
should be enforced. The basic form of the privacy poli-
cies is as follows Jϕ =⇒ ¬ψK[start | duration | recurrence]

a or
J¬ψK[start | duration | recurrence]

a if the policy has no conditions.
The start field is mandatory, but recurrence and duration are
optional. Table II shows the intervals 0, 1, . . . , i where a policy
must be enforced according to its parameters. If the recurrence
field is not defined, then a policy should be only enforced in
interval 0. We refer to the new language as timed privacy
policy language, T PPL.

In addition to the notion of a timestamp, we define a related
notion of duration. A duration d is a positive natural number
representing the number of milliseconds elapsed between
two points in time. Simply put, it stands for the absolute
difference of two timestamps |t2 − t1|, i.e., the time elapsed
between t1 and t2. We will use a more human-readable format
of durations. For instance, d = 60000 will be 1 minute,
d = 2167236000 will be 25 days, 2 hours and 36 seconds,
and so on.

The starting time of a policy is always a timestamp,
which allows us to pinpoint a specific moment in (real)
time from which the policy should be enforced. The other
two fields are duration and recurrence. They are written

Interval Start End

0 start start + duration
1 start + recurrence start + recurrence + duration
2 start + 2 recurrence start + 2 recurrence + duration
3 start + 3 recurrence start + 3 recurrence + duration
...

...
...

i start + i recurrence start + i recurrence + duration

TABLE II
TIME WINDOWS DEFINED BY THE TIME FIELDS OF A POLICY

in the duration format. These two fields define an offset
from a specific time based on the first field. Table II shows
how the three time fields work together to capture cer-
tain time windows. A privacy policy with the time fields
[2016-16-02 14:00 | 6 hours] is meant to be enforced on
February 16, 2016, from 14:00 to 20:00. On the other
hand, [2016-01-01 18:00 | 12 hours | 1 day] stands for ev-
ery night (from 18:00 to 6:00), starting on January 1, 2016.
We are now ready to define the general shape of formulae
used in the privacy policy language.

Definition 7 (Syntax of T PPL). Given agents i, j ∈ Ag ,
a nonempty set G ⊆ Ag , a timestamp s, duration d and
recurrence r, a variable x, a formula ϕ ∈ FKBL, the predicate
symbols cm(i, j), an(i, j), p(#»s) ∈ A where m ∈ C and n ∈ Σ,
the syntax of the privacy policy language with time T PPL is
inductively defined as:

δ ::= δ ∧ δ | ∀x.δ | τ
τ ::= J¬αK[s]

i | J¬αK[s | d]
i | J¬αK[s | d | r]

i |
Jϕ =⇒ ¬αK[s]

i | Jϕ =⇒ ¬αK[s | d]
i |

Jϕ =⇒ ¬αK[s | d | r]
i

α ::= α ∧ α | ∀x.α | cm(i, j) | an(i, j) | α′
α′ ::= γ′ | Liγ
γ′ ::= Kiγ | DGγ

γ ::= γ ∧ γ | ¬γ | p(#»s) | γ′ | cm(i, j) | an(i, j) | ∀x.γ

Note that Li cannot appear under the scope of a knowledge
modality. We will denote the set of all formulae of T PPL
as FT PPL and the set of all formulae created using the α
category (the restrictions) as FRT PPL. Now we introduce the
notion of conformance of a privacy policy in a trace.

Definition 8 (Conformance). Given a well-formed trace σ ∈
WFT , an agent i ∈ Agσ , formulae ϕ ∈ FT KBL, α ∈
FRT PPL, o ∈ D, and δ, δ1, δ2 ∈ FT PPL, the conformance
relation |=C is defined as shown in Table III.

We use N0 to denote the set of natural numbers including
0. The relation |=C is given in terms of the satisfaction
relation |=. First, the recurrence parameter determines the time
windows in which the policy must hold. This is done by getting
the starting timestamps of each time window, i.e., from 0 to
max(Tσ). Given that we consider finite traces there will be a

σ |=C δ1 ∧ δ2 iff σ |=C δ1 ∧ σ |=C δ2

σ |=C ∀x.δ iff for all v ∈ D
σ[t]
o , σ |=C δ[v/x]

σ |=C J¬αK[s | d | r]
i iff for all c ∈ N0 such that

0 ≤ s+ cr ≤ max(Tσ),
σ |=C J¬αK[s + cr | d]

i
σ |=C J¬αK[s | d]

i iff σ[s .. s+ d], s |= 2(¬α)
σ |=C J¬αK[s]

i iff σ[s ..], s |= 2(¬α)
σ |=C Jϕ⇒ ¬αK[s | d | r]

i iff for all c ∈ N0 such that
0 ≤ s+ cr ≤ max(Tσ),
σ |=C Jϕ⇒ ¬αK[s + cr | d]

i
σ |=C Jϕ⇒ ¬αK[s | d]

i iff σ[s .. s+ d], s |= 2(ϕ⇒ ¬α)
σ |=C Jϕ⇒ ¬αK[s]

i iff σ[s ..], s |= 2(ϕ⇒ ¬α)

TABLE III
CONFORMANCE RELATION FOR T PPL

finite number of time windows. Afterwards, subtraces from the
calculated starting timestamp plus the duration of the policy
are checked. In particular, we use box to check that all SNMs
satisfy the privacy policy. When the duration is not specified
we check from the starting timestamp to the end of the trace.

Theorem 2 (Checking conformance). Determining whether a
privacy policy ϕ ∈ FT PPL is in conformance with a trace
σ ∈ WFT , that is checking σ |=C ϕ, is decidable.

In what follows we show some examples of using T PPL to
encode evolving privacy policies.

Example 4. On Friday, April 15, 2016, Alice decides that
she wants to keep her private life separate from her life as
a graduate student. In a social network with privacy policies
using T PPL, she can keep her supervisor Bob from learning
her location on weekends by defining the following privacy
policy:

δ = J¬LBob loc(Alice)K[2016-04-16 | 2 days | 1 week]
Alice

Given a trace of the social network Alice and Bob use, δ would
be checked first in the subtrace from Saturday 16th, 00:00, to
Monday 18th, 00:00, then again from Saturday 23rd, 00:00,
to the end of Sunday 24th, and so on.

In order for the trace to be in conformance with δ, in each
of these subtraces, the T KBL formula 2(¬LBob loc(Alice))
needs to be satisfied. Based on the satisfaction relation (cf.
Def. I), this is only the case if the formula ¬LBob loc(Alice)
is satisfied at every point of the subtrace. This, in turn, means
that it must not be the case that LBob loc(Alice) is satisfied
in any of the SNMs of the subtrace.

To determine whether LBob loc(Alice), we check that
loc(Alice) can be derived from Bob’s knowledge base at time
t which represents the timestamp of the SNM currently being
checked. In other words, we have to determine whether Bob
learnt (either directly, or by inference) loc(Alice) at point t.
As t is a time in one of the time windows δ is defined for (i.e., a
weekend sometime after April 16th), Bob having access to this
particular piece of knowledge would be a violation of Alice’s
policy, since it would mean Bob managed to learn Alice’s
location on a weekend. Note, however, that Bob learning

Alice’s weekend location at any point not during a weekend
is not considered a violation of the policy. This is due to the
fact that the policy is not checked outside the time windows it
is defined for.

Example 5. Charlie will start a new one-month job on July
1st, 2016, and he would like to ensure that, during this period,
when he is at home only his friends can learn about his posts.
He achieves this by using the following policy of T PPL

δ = ∀x.Jhome(Charlie) ∧ ¬friend(Charlie, x) =⇒
¬Lxpost(Charlie, text)K[2016-07-01, 31 days]

Charlie

The predicate home(Charlie) is checked by consulting the
environment. Checking whether δ is violated ultimately boils
down to checking whether all TSNMs in the trace, starting at
2016-07-01 00:00 and ending at 2016-08-01 00:00, satisfy the
whole formula inside the policy. It should be noted, however,
that the time when the post was actually posted is irrelevant;
what matters is when the users learn about it. So if Charlie is
working and her colleague Daniel somehow gains access to
her post that was originally posted when she was at home, it
is not a violation of either of the policies.

Example 6. A few months ago Facebook decided to provide a
way for users to get over the end of a relationship in an easier
way. It is carried out by limiting the information that shows
up from the former partner [6]. For instance, pictures, videos
or posts from the ex-partner do not appear in the newsfeed.
This can be seen as a special set of privacy policies that apply
when users breakup. Of course, they can be modelled using
T PPL. Consider the privacy policy “if we break up, then you
can no longer learn about pictures I am tagged in”. Let us say
it is Frank who wants to enforce this and Eve is his current
girlfriend. He is free to write the following in T PPL:

δ = ∀η.Jbrokenup(Frank ,Eve) ∧ taggedin(Frank , η) =⇒
¬LEvepicture(η)K[t]

Frank

Here, too, checking whether δ is violated with respect to a
trace means checking the contents of the policy in all SNMs
in the trace, starting at time t. So if Eve gains access to a
picture Frank is tagged in that is new to her (no matter when
it was originally posted) when they are no longer together,
Frank’s policy will be violated.

III. T KBL MODEL-CHECKING

In order to show the proof of Theorem 1, that is, the
decidability of the model-checking problem for T KBL, we
present a naive model-checking algorithm which implements
directly the semantics of T KBL in Table I.

Lemma 3. Let σ be a well-formed trace of length n, t ∈ Tσ
be a timestamp, and ϕ ∈ FT KBL be a formula. Let q be
maximum number of nested quantifiers in ϕ and d an upper-
bound on the size of the domains for the quantifiers. There is
an algorithm that determines, using O(n × |ϕ| × dq × |Ag|)
queries to the epistemic reasoning engine, whether σ, t |= ϕ.

Proof. We first expand the universal quantifiers in ϕ by induc-
tively transforming each subformula ∀x.ϕ′ into a conjunction
with one conjunct ϕ′[v/x] for each element v in the domain D.
The resulting formula is quantifier free and has size O(|ϕ|×dq)
where d is a bound on the size of the domain and q is the
maximum nested stack of quantifiers. Let ϕ1, . . . , ϕm be the
subformulas of the resulting formula, ordered respecting the
subformula relation. An easy induction on k < m shows that
we can label—for every agent and at every step of the trace—,
starting from the earliest time-stamp with either ϕk or ¬ϕk.
We begin with the atomic part, ρ in Def. 1:
• Checking cm(e, f) and an(e, f) can be performed in

constant time, simply by checking the model at the given
instant, for every agent.

• Checking p(#»s) at a given instant t requires one query
to the epistemic reasoning engine for KBσ[t]

e (for the
environment agent e and time stamp t).

Then, for the epistemic part (ψ in Def. 1) we first resolve
all operators except Li:
• Checking ψk = ¬ψj and ψk = ψj ∧ ψi can be done in

constant time for each instant t and agent i, using the
induction hypothesis.

• Checking Kiψj requires one query to the epistemic
engine for KB

σ[t]
i ` ψj per instant.

• Checking DGψ at a given instant can be done with |Ag|
queries for each instant.

The operator Liψ is handled directly by checking the values
of Kiψ in the present instant and t the previous instant t′,
which has been precomputed as whether the formula ψ is
present or not in the label for agent i at instants t and t′.

Finally, for the temporal part (ϕ in Def. 1), we traverse the
trace from the end to the beginning.
• Checking 2ϕ at instant t requires obtaining ϕ at t and 2ϕ

at the next instant, using the temporal expansion 2ϕ ≡
ϕ ∧ Xϕ.

• Checking 3ϕ requires the same information, and hence
can also be done in time linear in the lenght of the trace,
using the temporal expansion 3ϕ ≡ ϕ ∨ Xϕ.

It is easy to see that the semantics of T KBL is captured by
the algorithm and the bounds of the theorem in the number of
queries to the epistemic engine are met.

Computing whether a formula ϕ can be derived from a
collection of knowledge facts is a PSPACE-complete problem
by Fagin et al. in [7], so reducing the number of queries is
essential. Note that in the algorithm presented in Lemma 3
the number of tests to the epistemic engine to resolve a Liϕ
formula is reduced to one based on the fact that the knowledge
of the agents grows monotonically and provided that (a) Kiϕ
is memoized at every step, and (b) the sequence is visited in
increasing order.

A. Timestamping knowledge

An alternative solution to the algorithm in Lemma 3 is
to add timestamps to formulae in the agents’ knowledge

bases. If Alice learns Bob’s location at time 3, we say that
(loc(Bob), 3) ∈ KBAlice . It also allows us to differentiate
between a formula that has been learnt twice. For exam-
ple, Alice can also learn Bob’s location at time 7, thus
(loc(Bob), 3), (loc(Bob), 7) ∈ KBAlice .

This approach allows us to incrementally remember when
facts are learnt by the epistemic engine, but requires to know
upfront the formula to model-check. This approach requires
to update the notion of derivability (cf. Def. 3) to support
timestamps. For simplicity, this time we define a timed closure
function which computes all derivable formulae from an
agent’s knowledge base taking into account timestamps. We
denote this closure function Tcl : 2FKBL×T → 2FKBL×T, for
the formal definition see Appendix Def. 9. Thus the semantics
of Ki and Li would be modified as follows

σ, t |= Kiϕ iff (ϕ, t′) ∈ Tcl(KB
σ[t]
i) where t′ ∈ T

σ, t |= Liϕ iff (ϕ, t) ∈ Tcl(KB
σ[t]
i)

The timestamps of the formulae that are added to the agents’
knowledge base must grow monotonically. In the axioms and
derivation rules of Tcl(KB i) (cf. Def. 9) when two different
timestamps are involved in the derivation we always take
the maximum for the derived formula. If one timestamp is
involved we keep the value. It turns out to be enough to
preserve the monotonicity of the derivations.

Lemma 4. Time in Tcl(KB i) is monotonic.

In order to make sure of the correctness of this modification
we also require that Tcl(KB i) preserves the amount of
knowledge that the agents can infer with respect to the untimed
version `.

Lemma 5. For all ϕ ∈ FKBL, KB i ` ϕ iff (ϕ, t) ∈ Tcl(KB i)
where t ∈ T.

As expected adding timestamps to derivations keeps the
problem decidable.

Lemma 6. For all ϕ ∈ FKBL and t ∈ T, determining whether
(ϕ, t) ∈ Tcl(KB i) is decidable.

B. Further Optimizations

There are other optimisations that could be applied to
obtain a more practical algorithm. The first observation is that
the size d of the domains in a practical SNM can be very
large, but the potentially interesing instantiations of a universal
quantifier in a formula can typically be bound with a much
smaller value. This is the case when the sub-formula within
the quantifier is guarded by a limiting predicate, that is the
antecedent A of the formula ∀x.[A ⇒ B] is, for example,
friend(Charlie, x). The only potential instantiations that make
the formula true are those friends of Charlie. This set can be
scoped much better than the whole population of the social
network. Another future optmization is to leverage the proof
tree of one derivation for a subsequent derivation. Consider
the check at time t for KB

σ[t]
i ` ϕ ∧ ψ. In a later check

KB
σ[t+1]
i ` ψ we could leverage the proof at time t to

instantaneusly determine that ψ is derivable. Of course, this
approach requires to always keep the proof tree in memory,
which might be problematic if the knowledge bases of the
agents grow quickly.

IV. RELATED WORK

To the best of our knowledge, this work is the first attempt to
formalise privacy policies for social networks which depend
on time. However, specifying and reasoning about temporal
properties in multi-agent systems using epistemic logic have
been subject of study for a long time. It began with the so
called interpreted systems (IS). In [7] Fagin et al. introduce
IS as a model to interpret epistemic formulae with temporal
operators such as box and diamond. IS have been used
for security analyses of multi-agent systems. For instance,
IS have been used to formalise the notion of secrecy [9]
and information-flow properties such as non-interference [1].
T KBL has similar semantics to IS, but with the difference
that in IS perfect recall is not always assumed. It means that
forgetful agents can be modelled, unlike in SNMs.

Recent research has been carried out in extending IS to be
able to reason about past or future knowledge. In [2] Moses
et al. extend Ki with a timestamp Ki,t. It makes possible to
express properties such as “Alice knows at time 5 that Bob
knew p at time 3”, i.e., KAlice,5KBob,3 p. T KBL is not as
expressive as that of Moses, since formulae in T KBL cannot
talk about future of past knowledge. In T KBL we can only
differentiate between learning and knowing. Nevertheless, in
the knowledge bases proposed in Section III we include
timestamps indicating when the agents learnt the information.
Thus, we claim that formulae in Moses’ language could be
interpreted in those knowledge bases. Using an approach sim-
ilar to Moses’ epistemic logic would make it possible to define
learning in terms of knowledge, since the language permits to
syntactically specify the timestamp of the knowledge.

In [18] Woźna & Lomuscio present TCTLKD a combination
of epistemic logic, CTL, a deontic modality and real time.
Formulae in TCTLKD are more expressive than both of the
languages we present in this paper T KBL and T PPL. The
models used to interpret formulae in TCTLKD are also more
complex than the ones presented in this paper, since they
are based on a semantics for a branching logic. They are a
combination of timed automata and IS plus a an equivalence
relation for modelling permission. For our purpose we do not
need such a complex modelling power. Even though it has
not been formally studied, we claim that the complexity of
the model-checking problem of formulae in TCTLKD is much
higher than that of T KBL.

V. FINAL DISCUSSION

We have presented a novel privacy policy framework with
support for dynamic recurrent privacy policies that depend
on time. It has been done by extending FPPF [15], [16].
Concretely, we have extended the knowledge-based logic with
the temporal modalities 2, 3, and the learning modality Li
resulting in T KBL. A satisfaction relation to check formulae

in T KBL has been defined as well. These elements corre-
spond the intermediate tools to the enforcement of privacy
policies that depend on time. Additionally, we have studied
some properties regarding the relation between knowledge and
learning. We have provided the language T PPL to express
timed privacy policies and a conformance relation to check
that the policies are not violated during the execution of a
trace. Finally, we have proved that checking conformance of a
privacy policy in T PPL and model-checking of T KBL for-
mulae are decidable.

Yet there are some limitations in T FPPF . Firstly, in
T KBL we cannot write formulae that describe knowledge at
a given moment in time. This could be solved by introducing
a knowledge modality which includes the timestamp of the
knowledge we are interested in checking. It would make
the learning modality derivable from knowledge. Secondly,
we only check the privacy policies during the time window
specified in the policy. This might not be as expressive as
one might wish. Consider that Alice enables the following
policy “Only my friends can know my pictures during the
weekend” (P1). Let Bob be a friend of Alice. If Alice shares
a picture on Saturday, Bob will have access to it. Imagine
now that on Monday Alice unfriends Bob. At this moment P1
should be violated, because Alice is not a friend with Bob
and Bob knows a picture of Alice during the weekend. To
enforce this stronger privacy policy we need to extend the
logic not only with timestamps in the modalities, but also in
the predicates. It will also enable the possibility of having more
precise models where the timestamps of predicates represent
their own timestamp instead of the time when an agent learnt
them.

There exists a prototype implementation of some of the poli-
cies of FPPF in the social network Diaspora* [3], [8]. We
are currently investigating how to adapt our implementation
to support T FPPF privacy policies.

Acknowledgements: This research has been supported by:
the Swedish funding agency SSF under the grant Data Driven
Secure Business Intelligence, the Swedish Research Council
(Vetenskapsrådet) under grant Nr. 2015-04154 (PolUser: Rich
User-Controlled Privacy Policies), and the European ICT
COST Action IC1402 (Runtime Verification beyond Monitor-
ing (ARVI)).

REFERENCES

[1] M. Balliu. A logic for information flow analysis of distributed programs.
In Secure IT Systems, pages 84–99. Springer, 2013.

[2] I. Ben-Zvi and Y. Moses. Agent-time epistemics and coordination.
In Logic and Its Applications, volume 7750 of LNCS, pages 97–108.
Springer, 2013.

[3] Diaspora*. https://diasporafoundation.org/. Accessed: 2016-06-28.
[4] K. Erciyes. Complex Networks: An Algorithmic Perspective. CRC Press,

Inc., Boca Raton, FL, USA, 1st edition, 2014.
[5] Facebook, inc. https://www.facebook.com/. Accessed: 2016-06-28.
[6] Improving the experience when relationships end*. facebook’s news-

room. http://newsroom.fb.com/news/2015/11/improving-the-experience-
when-relationships-end/. Accessed: 2016-06-27.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
knowledge, volume 4. MIT press Cambridge, 1995.

[8] PPF Diaspora*. Test pod: https://ppf-diaspora.raulpardo.org. Code:
https://github.com/ raulpardo/ppf-diaspora. Accessed: 2016-06-28.

[9] J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. ACM
Transactions on Information and System Security (TISSEC), 12(1):5,
2008.

[10] M. Johnson, S. Egelman, and S. M. Bellovin. Facebook and privacy:
It’s complicated. In SOUPS’12, pages 9:1–9:15, New York, NY, USA,
2012. ACM.

[11] A. Lenhart, K. Purcell, A. Smith, and K. Zickuhr. Social media & mobile
internet use among teens and young adults. millennials. Pew Internet &
American Life Project, 2010.

[12] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove. Analyzing
facebook privacy settings: User expectations vs. reality. In ACM
SIGCOMM, IMC ’11, pages 61–70. ACM, 2011.

[13] M. Madejski, M. Johnson, and S. Bellovin. A study of privacy settings
errors in an online social network. In PERCOM Workshops’12, pages
340–345. IEEE, 2012.

[14] M. Madejski, M. L. Johnson, and S. M. Bellovin. The failure of
online social network privacy settings. Technical Report CUCS-010-
11, Columbia University, 2011.

[15] R. Pardo. Formalising Privacy Policies for Social Networks. Depart-
ment of Computer Science and Engineering, Chalmers University of
Technology, 2015. Pages 102. Licentiate thesis.

[16] R. Pardo and G. Schneider. A formal privacy policy framework for
social networks. In SEFM’14, volume 8702 of LNCS, pages 378–392.
Springer, 2014.

[17] Twitter, inc. https://twitter.com/. Accessed: 2016-06-28.
[18] B. Woźna and A. Lomuscio. A logic for knowledge, correctness, and

real time. In Computational Logic in Multi-Agent Systems, volume 3487
of LNCS, pages 1–15. Springer, 2004.

APPENDIX

A. Formal definitions of timed knowledge bases

Definition 9 (Timed Closure of a Knowledge base). Given the
knowledge base of an agent i, KB i, Tcl(KB i) satisfies the
following properties:
a) For all ϕ ∈ FKBL and t ∈ T, If (ϕ, t) ∈ Tcl(KB i) then

(¬ϕ, t) 6∈ Tcl(KB i),
b) Introduction and elimination rules for conjunction:
∧I - If (ϕ, t) ∈ Tcl(KB i) and (ψ, t′) ∈ Tcl(KB i), then

(ϕ ∧ ψ,max(t, t′)) ∈ Tcl(KB i)
∧E1 - If (ϕ ∧ ψ, t) ∈ KB i, then (ϕ, t) ∈ Tcl(KB i),
∧E2 - Analogous to ∧E1 but for ψ,

c) If (ϕ, t) ∈ Tcl(KB i) and (ϕ =⇒ ψ, t′) ∈ Tcl(KB i),
then (ψ,max(t, t′)) ∈ Tcl(KB i),

d) If (ϕ, t) ∈ Tcl(KB i) then (Kiϕ, t) ∈ Tcl(KB i),
e) If ϕ is provable in the axiomatisation S5 ([7]) from

Tcl(KB i), then ϕ ∈ Tcl(KB i). Formally:
A1 - If ϕ is an instance of a first-order tautology, then

(ϕ, t>) ∈ Tcl(KB i),
A2 - If (Kiϕ, t) ∈ Tcl(KB i) and (Ki(ϕ =⇒ ψ), t′) ∈
Tcl(KB i), then (Kiψ,max(t, t′)) ∈ Tcl(KB i),

A3 - If (Kiϕ, t) ∈ Tcl(KB i), then (ϕ, t) ∈ Tcl(KB i),
A4 - If (Kiϕ, t) ∈ Tcl(KB i), then (KiKiϕ, t) ∈
Tcl(KB i),

A5 - If (ϕ, t) 6∈ Tcl(KB i), then (¬Kiϕ, t) ∈ Tcl(KB i),
R1 - Modus ponens, it is defined as c),
R2 - If (ϕ, t) is provable from no assumptions (i.e., ϕ is a

tautology) then (Kiϕ, t) ∈ Tcl(KB i),
C1 - (EGϕ, t) ∈ Tcl(KB i) iff (

∧
i∈GKiϕ, t) ∈

Tcl(KB i),
C2 - (CGϕ, t) ∈ Tcl(KB i) iff (EG(ϕ ∧ CGϕ), t) ∈
Tcl(KB i),

RC1 - If (ϕ =⇒ EG(ψ ∧ ϕ), t) is provable from no
assumptions, then (ϕ =⇒ CGψ, t) ∈ Tcl(KB i),

D1 - (D{i}ϕ, t) ∈ Tcl(KB i) iff (Kiϕ, t) ∈ Tcl(KB i),
D2 - If (DGϕ, t) ∈ Tcl(KB i), then (DG′ϕ, t) ∈
Tcl(KB i) if G ⊆ G′,

DA2-DA5 Properties A2, A3, A4 and A5, replacing the
modality Ki with the modality DG for each axiom.

Remark 1. The rules ∧E1
and ∧E2

can only be applied if the
formula ϕ ∧ ψ was explicitly added to the knowledge base
to avoid illegal updates of timestamps. If ∧I was used to
construct ϕ ∧ ψ, the following derivation would be possible.
Given that (ϕ, 1) ∈ Cl(KB i) and (ψ, 4) ∈ Cl(KB i), by ∧I
we get (ϕ ∧ ψ, 4) ∈ Tcl(KB i). Now if we apply ∧E1

we can
derive (ϕ, 4) ∈ Tcl(KB i), which adds an updated copy of
ϕ to the knowledge base of the agents. This update must be
forbidden because it corresponds to unrealistic knowledge.

Remark 2. Tautologies in Tcl(KB i) have the special times-
tamp t>. It is used to represent any timestamp, i.e., t = t>

for all t ∈ T. When tautologies are used in a derivation
involving other premises we will always take the timestamp of
the premise that is not a tautology, it is formally guaranteed
by defining max(t, t>) = t.

B. Proofs

Lemma 1. The axiom L is sound w.r.t. traces of SNMs.

Proof. It trivially follows from |= (cf. Def. 6). We show that
for all σ ∈ WFT , t ∈ T and ϕ ∈ FKBL the following holds
σ, t |= Liϕ =⇒ Kiϕ. Assume that σ, t |= Liϕ. By |=, it
follows that KB

σ[t]
i ` ϕ. Therefore, by |= we can conclude

that σ, t |= Kiϕ.

Lemma 2. The perfect recall axiom is sound w.r.t. traces of
SNMs.

Proof. It trivially follows from |= (cf. Def. 6). We show that
for all σ ∈ WFT , t ∈ T and ϕ ∈ FKBL the following holds
σ, t |= Kiϕ =⇒ 2Kiϕ. Assume that σ, t |= Kiϕ. By |=, it
follows that KB

σ[t′]
i ` ϕ such that t′ ∈ Tσ and t′ ≤ t. By |=,

σ, t |= 2Kiϕ holds iff for all t′′ ∈ T such that t′′ ≥ t. Since
at t there exists a t′ such that t′ ≤ t and information cannot
disappear from KB i, for all t′′ ∈ Tσ such that t′′ ≥ t, it holds
KB

σ[t′′]
i ` ϕ, therefore σ, t |= 2Kiϕ holds.

Theorem 2. Determining whether a privacy policy ϕ ∈
FT PPL is in conformance with a trace σ ∈ WFT , that is
checking σ |=C ϕ, is decidable.

Proof. It follows from the Def. 8. We show it by induction on
the structure of the privacy policies. The base cases are J¬αKi
and Jϕ =⇒ ¬αKi with their corresponding time frames
[s] and [s | d]. Since satisfaction of T KBL formulae is
decidable (cf. Theorem 1), we need to establish decidability
of computing the time frame. For [s] it is decidable since we
consider finite traces and it reduces to checking satisfaction at
time s of all the SNMs included in the finite subtrace from s
to the end of the original trace. The case [s | d] is analogous

to the previous one, but taking a subtrace of the original trace,
which length is determined by the duration parameter. The
inductive steps are [s | d | r], ∧ and ∀. the case The case
[s | d | r] splits the trace in time frames according to the
recurrence parameter. Given that σ is finite, there is only
a finite number of integers from 0 to max(Tσ), hence the
splitting is finite. Moreover, it reduces to the case [s | d],
which by induction hypothesis is decidable. As in the proof
of Theorem 1 the inductive steps for ∀ and ∧ follow from
their induction hypothesis.

Lemma 3. Time in timed derivations is monotonic.

Proof. It follows from the definition of Tcl(KB i) (cf. Def. 9).
We show that none of the properties in Def. 9 generate a
formula with a timestamp less than that of any of the premises
applied in the derivation. Properties a), ∧E1

, ∧E2
, d), A1,

A3, A4, A5, R2, C1, C2, RC1, D1, D2, and DA3-DA5 do
not change the timestamp of the premise they are applied on.
Therefore the timestamp of a formula derived using any of
the previous properties will be equal to that of the premise(s).
The remaining properties ∧I , c), A2, R1 and DA2 always
take the maximum timestamp of the premises used to derive
the conclusion, hence the timestamp of a derived formula will
always be greater of equal to that of the premise(s) used in
the derivation. Finally, we conclude that none of the properties
in Tcl(KB i) produces a formula with a timestamp smaller to
that of the premise(s) used in the derivation, hence time in
these derivations is monotonic.

Lemma 4. For all ϕ ∈ FKBL, ϕ ∈ Cl(KB i) iff (ϕ, t) ∈
Tcl(KB i) where t ∈ T.

Proof. It trivially follows from the definition of Cl(KB i) [15].
Given that Tcl (cf. Def. 9) is characterised by the exact
same properties and since the operations regarding timestamps
(i.e., take the maximum of two timestamps or keep the same
timestamp) do not affect the derivations using the axioms and
rules of Tcl , we conclude that both sets contain the same
formulae.

Lemma 5. For all ϕ ∈ FKBL and t ∈ T, determining whether
(ϕ, t) ∈ Tcl(KB i) is decidable.

Proof. Checking whether a formula ϕ ∈ FKBL is derivable
under the axiomatisation S5 is decidable [7]. By definition, the
closure function Cl (and consequently Tcl) are S5 maximal-
consistent sets, hence checking whether ϕ ∈ Cl(KB i) is
decidable. Therefore, the remaining question is whether the
derivation algorithm for timestamps is decidable. For proper-
ties a), ∧E1

, ∧E2
, d), A3, A4, A5, R2, C1, C2, RC1, D1,

D2, and DA3-DA5, it is trivially decidable since t is not
updated. For ∧I , c), A2, R1 and DA2, it is also decidable
since computing the maximum of two numbers is decidable.
Finally, when ϕ is a tautology (ϕ,>) ∈ Tcl(KB i), hence once
it is established that ϕ is a tautology the value of t is irrelevant
(since t = > for all t ∈ T), and as mentioned, determining
whether ϕ a tautology is decidable. Finally, we conclude that
(ϕ, t) ∈ Tcl(KB i) is decidable.

